
Amazon Quantum Solutions Lab, AWS Professional Services, 2025

Gala: Global LLM Agents for
Text-to-Model Translation

Serdar Kadıoğlu
1 Dept. of Computer Science, Brown University
2 AI Center of Excellence, Fidelity Investments

skadio.github.io

https://skadio.github.io/

Learning & Reasoning

Data Science: ML/DL/NLP/LLMs/etc.

Focuses on machine learning using historical data

to identify patterns and make predictions. Excels at

pattern recognition, classification, and forecasting.

System 1 - Predictive Models

• Learning from historical data patterns

• Probabilistic predictions and insights

• Ideal for unstructured problems

• Applications include recommendation systems,

image recognition, and natural language processing

Decision Science: OR/MIP/CP/SAT/LS/etc.

Focuses on combinatorial satisfaction and optimization

using logical and mathematical models. Provides provable

optimality and explicit reasoning.

System 2 - Prescriptive Models

• Mathematical and logical formulations

• Provably optimal for deterministic environments

• Perfect for structured problems

• Applications include verification, planning,

scheduling, routing, and resource allocation

The Evolution of AI Paradigms: From Classical AI to Modern and Generative AI [AAAI YouTube]

https://www.youtube.com/watch?v=8SMmjBQ40YE&list=PL3kNflhPEzie9ivF8N_Z3Ac4d4Sum8iVz

Existing ML-OR Integration

• Algorithm configuration procedures

• Variable and constraint selection

• Branching strategies

• Cut selection

• Node selection

• Tree-search configuration

Emerging NLP-OR Integration

• Named entity recognition for optimization

• Natural language interfaces for solvers

• Automated model formulation

• Explanation generation

• Interactive modeling assistants

• Domain-specific optimization co-pilots

Integration with Optimization Technology

The De-Facto
Model-and-Run Strategy

1 Problem Description
Users describe optimization problems in natural language, which
contains ambiguous references to variables, constraints, and
objectives that must be precisely identified.

2 Model Formulation
Experts must manually transform problem descriptions into
formal mathematical models, a process that requires specialized
knowledge and is prone to errors.

3 Solution Finding
Once properly modeled, optimization solvers can find optimal
solutions, but the modeling barrier remains a significant obstacle
to wider adoption of optimization technology.

Decision Making in the Era of
Large-Language Models

1 Reasoning: Optimization

• Optimization technology and constraint solving techniques

are powerful and have many applications.

• The cognitive barrier of translating problem descriptions into

formal constraint models persists.

2 Learning: Large-Language Models

• LLMs have found success in many fields recently.

• However, they still face challenges in generating constraint

models from free-form natural language text.

Our Vision: Modeling Co-Pilots

Natural Language

Problem descriptions in free-form text

LLM Co-Pilot

Automated translation and formulation

Formal Models

Executable constraint model code

Solution | Interactivity | Feedback Loop

Verified results

A paradigm shift integrating automated modeling assistants capable of translating natural language into

formal optimization formulations.

Holy Grail 2.0

Blueprint for optimization modelling co-pilots with

feedback loop and user interactivity.

Tsouros et. al., 2023

Ner4Opt

Text2Zinc

A unified cross-domain dataset curated to work with

LLM co-pilots and leaderboard to evaluate strategies

to generate MiniZinc models from free-from natural

language text. Singirikonda et. al., AAAI’25

Gala: Global LLM Agents

A global agentic approach with multiple specialized

LLM agents decompose the modeling task by global

constraint type.

Cai et. al. NeurIPS’25

A principled approach to extracting components of

optimization models such as the objective, variables,

and constraints from free-form natural language text.

Kadioglu et. al, Constraints’24

Our Contributions

https://arxiv.org/abs/2308.01589
https://arxiv.org/abs/2308.01589
https://arxiv.org/abs/2503.10642
https://arxiv.org/abs/2503.10642
https://arxiv.org/abs/2509.08970
https://link.springer.com/chapter/10.1007/978-3-031-33271-5_20

Definition: Combinatorial Problems

CSPs: Constraint Satisfaction Problem

A Constraint Satisfaction Problem is defined as a triple:

• X: Finite set of decision variables

• D: Domains assigning each variable admissible values

• C: Constraints mapping assignments to truth values

A feasible solution assigns all variables such that all

constraints evaluate to true.

COPs: Constrained Optimization Problems

Optimization augment CSPs with an objective function:

An optimal solution minimizes or maximizes O

while respecting all constraints.

• O: Objective assigns cost/value to assignments.

Let I = (T, P, O, D) represent the input

specification where:

• T: Natural language problem description

• P: Set of input parameters with definitions,

symbols, and shapes

• O: Set of output variables with specifications

• D: Metadata containing problem properties

Given input I and data instance d, learn function:

where M represents the space of valid constraint

models that correctly implement the

specifications.

Definition: Modeling Co-Pilots

Ner4Opt

A principled approach to extracting
components of optimization models such as
the objective, variables, and constraints from
free-form natural language text.

Kadıoğlu et. al. Ner4Opt [Constraints’24] ACP YouTube

Our Contributions

https://www.youtube.com/watch?v=mWDapm_CNxQ

Introducing Ner4Opt

Named Entity Recognition

Ner4Opt extends traditional

named entity recognition to

identify optimization-specific

components like variables,

parameters, constraints,

limits, and objectives from

natural language text.

Optimization Context

Unlike standard NER which

focuses on people, places, and

organizations, Ner4Opt targets

elements needed for

mathematical optimization

models across diverse

application domains.

Modeling Assistance

By automatically extracting these entities, Ner4Opt helps bridge the

gap between problem descriptions and formal optimization models,

making optimization technology more accessible.

Unique Challenges of LLM Co-Pilots

33 Multi-Sentence Dependency

Optimization problems typically span multiple sentences
with high levels of ambiguity, requiring models to capture

relationships across longer text spans.

2 Low Data Regime

The specialized nature of optimization makes it difficult
and expensive to obtain large annotated datasets,
necessitating to perform well with limited training data.

5 Aleatoric Uncertainty

Inherent ambiguity in entity boundaries and classifications
creates challenges even for human annotators, placing an
upper bound on achievable performance.

4 Counter-intuitive Linguistics

Unlike traditional NER where entities share grammatical
properties, optimization entities vary widely in linguistic

characteristics while belonging to the same class.

1 Domain-Agnostic Generalization

Optimization technology applies to diverse domains,
requiring Ner4Opt solutions to generalize across
applications rather than being domain-specific.

6 Linguistic Variability

Optimization problems exhibit significant variability in
linguistic patterns, problem structures, and application
domains, making entity recognition more challenging.

Unique Challenges of LLM Co-Pilots

33 Multi-Sentence Dependency

Optimization problems typically span multiple sentences
with high levels of ambiguity, requiring models to capture

relationships across longer text spans.

2 Low Data Regime

The specialized nature of optimization makes it difficult
and expensive to obtain large annotated datasets,
necessitating to perform well with limited training data.

5 Aleatoric Uncertainty

Inherent ambiguity in entity boundaries and classifications
creates challenges even for human annotators, placing an
upper bound on achievable performance.

4 Counter-intuitive Linguistics

Unlike traditional NER where entities share grammatical
properties, optimization entities vary widely in linguistic

characteristics while belonging to the same class.

1 Domain-Agnostic Generalization

Optimization technology applies to diverse domains,
requiring Ner4Opt solutions to generalize across
applications rather than being domain-specific.

6 Linguistic Variability

Optimization problems exhibit significant variability in
linguistic patterns, problem structures, and application
domains, making entity recognition more challenging.

Technical Approaches to Ner4Opt

Classical NLP

Feature engineering with

Conditional Random Fields (CRF)

leverages grammatical,

morphological, and syntactic info.

Custom features like gazetteers and

automata capture optimization

specific patterns.

Modern Language Models

Transformer-based approaches like

RoBERTa and XLM-RB generate

contextual embeddings that capture

semantic relationships.

These models are fine-tuned on

optimization corpora to improve

domain-specific understanding.

Hybrid Solutions

Combination of classical feature

engineering with modern language

models yields the best performance.

Data augmentation techniques

address challenges like long-range

dependencies and disambiguation

between variables and objectives.

Classical+: Feature Engineering for Optimization

profit SUBJ to be maximized OBJ_DIR

maximize OBJ_DIR the total monthly ADJP profit NOUN

Text
Extraction

Extracting textual data from

PDF versions of optimization

textbooks to create a domain-

specific corpus.

Masked Language
Modeling

Continued pre-training via

masked language modeling by

randomly masking 15% of

words and training the model

to predict them.

Token Replacement
Strategy

Replacing 80% of masked

words with the MASK token,

10% with random words, and

10% with the original word to

create robust training

examples.

Self-Supervised
Training

Training the model in a self-

supervised fashion to predict

the masked words, helping it

learn optimization-specific

vocabulary and patterns.

Modern+: Training on Optimization Corpora

❑ Experiments on a benchmark dataset of linear programming
word problems.

❑ This dataset contains 1,101 samples annotated with six entity
types: variable (VAR), parameter (PARAM), limit (LIMIT),
constraint direction (CONST_DIR), objective direction
(OBJ_DIR), and objective name (OBJ_NAME).

❑ The problems in the dataset span six domains grouped into
source domains: advertising, investment, sales
target domains: production, science, transportation.

❑ Training set consists samples only from source domains,
while development and test sets include samples from both
source and target domains in a 1:3 ratio.

❑ Variables (VAR) are the most common entity type, followed by
parameters (PARAM) and objective names (OBJ_NAME).
Objective direction (OBJ_DIR) is the least frequent entity type.

VAR PARAM LIMIT OBJ_NAME CONST_DIR OBJ_DIR

Experimental Setup

Ramamonjison et. al., NL4Opt Competition: Formulating Optimization Problems Based on Natural Language Descriptions

Experimental Results

The Hybrid Approach combining classical feature engineering with optimization-fine-tuned language models achieves the best
performance with a micro-averaged F1 score of 0.919. This represents a significant improvement over the baseline classical approach
(0.816) and the previous state-of-the-art (0.888). The most challenging entity to identify is the objective name (OBJ_NAME), where the
hybrid approach shows the largest improvement over other methods.

Comparison with
Large Language Models (GPT-4)

Zero-Shot GPT-4

Direct application of GPT-4 without examples achieves only
0.546 F1 score, struggling with entity boundaries and
disambiguation.

Few-Shot Learning

Adding examples improves performance significantly, with five

examples reaching 0.838 F1 score, demonstrating the
importance of in-context learning.

Hybrid Approach

Our dedicated Ner4Opt hybrid solution (0.919 F1) still
outperforms even few-shot GPT-4, highlighting the value of

specialized approaches for optimization tasks.

Ner4Opt for Modeling Assistants

44.44%
Without Annotations

GPT-4 with problem description only
MiniZinc model generation

65.66%
With Ner4Opt Annotations

GPT-4 with problem description + Ner4Opt
MiniZinc model generation

Library Features
Simple API for extracting optimization entities from text,
with options to select different model types and confidence
thresholds.

OBIE Output Format
Returns a list of dictionaries, each containing entity
information including start/end indices, text, entity type,
and confidence score.

Pre-trained Resources
Source code, training protocols, and pre-trained models are
all publicly available through GitHub and Hugging Face.

pip install ner4opt

https://huggingface.co/spaces/skadio/ner4opt

Ner4Opt Open-Source Library

https://huggingface.co/spaces/skadio/ner4opt

Interactive Demo

User Interface

Demo interface with a model
selection panel, a text input
field for problem description
and an output panel that
highlights identified entities
with color-coded tags.

Model Selection

Users can choose
between different model
types (lexical, lexical-plus,
semantic, hybrid) to
compare performance on
the same input text.

Hugging Face Spaces Demo

https://huggingface.co/spaces/skadio/ner4opt

https://huggingface.co/spaces/skadio/ner4opt

Integration
Designed for easy integration with optimization solvers and
modeling frameworks, envisioned as part of Holy Grail 2.0
constraint programming modeling assistant.

ChatOpt Integration

❑ Holy Grail 2.0: From Natural Language to Constraint Models, CP 2023, D. Tsouros, H. Verhaeghe, S. Kadıoğlu, T. Guns
❑ Constraint modelling with LLMs using in-context learning, CP 2024, K. Michailidis, D. Tsouros, T. Guns

Integration
Designed for easy integration with optimization solvers and
modeling frameworks, already used in the Holy Grail 2.0
constraint programming modeling assistant.

ChatOpt Integration

❑ Holy Grail 2.0: From Natural Language to Constraint Models, CP 2023, D. Tsouros, H. Verhaeghe, S. Kadıoğlu, T. Guns
❑ Constraint modelling with LLMs using in-context learning, CP 2024, K. Michailidis, D. Tsouros, T. Guns

Integration
Designed for easy integration with optimization solvers and
modeling frameworks, already used in the Holy Grail 2.0
constraint programming modeling assistant.

ChatOpt Integration

❑ Holy Grail 2.0: From Natural Language to Constraint Models, CP 2023, D. Tsouros, H. Verhaeghe, S. Kadıoğlu, T. Guns
❑ Constraint modelling with LLMs using in-context learning, CP 2024, K. Michailidis, D. Tsouros, T. Guns

Integration
Designed for easy integration with optimization solvers and
modeling frameworks, already used in the Holy Grail 2.0
constraint programming modeling assistant.

ChatOpt Integration

❑ Holy Grail 2.0: From Natural Language to Constraint Models, CP 2023, D. Tsouros, H. Verhaeghe, S. Kadıoğlu, T. Guns
❑ Constraint modelling with LLMs using in-context learning, CP 2024, K. Michailidis, D. Tsouros, T. Guns

github.com/skadio/ner4opt pip install ner4opt

Constraints’24

https://link.springer.com/chapter/10.1007/978-3-031-33271-5_20

Integration with Solvers

Embedding Ner4Opt directly into
optimization platforms to enable

natural language interfaces for
model creation.

1

Domain Adaptation

Extending the approach to
specialized fields like supply chain,
finance, and healthcare with
domain-specific entity types.

2

Interactive Modeling

Developing conversational
interfaces that use Ner4Opt to
clarify ambiguities and refine
optimization models through
dialogue.

3
Text2Zinc

A unified cross-domain dataset
curated for LLM co-pilots and an

associated leaderboard to evaluate
strategies to generate MiniZinc

models from natural language text.

4

What’s Next?

Our Contributions

Holy Grail 2.0

Blueprint for optimization modelling co-pilots with

feedback loop and user interactivity.

Tsouros et. al., 2023

Ner4Opt

Text2Zinc

A unified cross-domain dataset curated to work with

LLM co-pilots and leaderboard to evaluate strategies

to generate MiniZinc models from free-from natural

language text. Singirikonda et. al., AAAI’25

Gala: Global LLM Agents

A global agentic approach with multiple specialized LLM

agents decompose the modeling task by global

constraint type.

Cai et. al. NeurIPS’25

A principled approach to extracting components of

optimization models such as the objective, variables,

and constraints from free-form natural language text.

Kadioglu et. al, Constraints’24

https://arxiv.org/abs/2308.01589
https://arxiv.org/abs/2308.01589
https://arxiv.org/abs/2503.10642
https://arxiv.org/abs/2503.10642
https://arxiv.org/abs/2509.08970
https://link.springer.com/chapter/10.1007/978-3-031-33271-5_20

Text2Zinc: Motivation

Driving Progress

Datasets and benchmarks fuel progress in

various domains: Computer Vision, NLP,

and SAT, CP, MIP, RecSys, etc.

Room for Improvement

Current problem datasets have potential

for improvement for integration with

language models.

Structured Information & Metadata

Models and natural language descriptions of problems have been documented heavily

but seldom occur together. Crucial metadata is unavailable.

Existing Resources

NL4OPT

• Linear programming problems

• No separation between problem

description and data

• Relatively easy instances

NLP4LP

• Extends NL4OPT

• Introduces MIPs

• Evaluated with GurobiPy and

cvxpy

ComplexOR

• Standard OR Problems

• Evaluated with GurobiPy

CSPLib

• CP and Satisfaction problems

• Not designed to work with ML or

LLMs

* Massive thank you to the community for contributing these valuable resources!

Logic Grid Puzzles

• Introduces satisfaction

problems in the form of logic

grid puzzles

Hakank’s Models

• Extensive set of constraint

models in various languages

• Does not capture metadata

O
ptim

ization
Satisfaction

Text2Zinc: Addressing Dataset Gaps

Cross-Domain
• Focus on combining both

optimization & satisfaction

problems.

• The first (and currently only)

dataset to incorporate LP, MIP,

and CP problems.

Unified Format
• Unifies existing datasets.

• Clear separation of problem

description & instance data.

Solver Agnostic

• Enables solver agnostic

approaches.

• MIP, CP, SAT, LCG through

MiniZinc.

Data Augmentation

• Clear and concise descriptions.

• Input and output specification.

• Metadata generation.

• Manual verification.

S. Kadıoğlu et. al. Text2Zinc: A Cross-Domain Dataset for Modeling Optimization and Satisfaction Problems in MiniZinc

https://arxiv.org/abs/2503.10642
https://arxiv.org/abs/2503.10642
https://arxiv.org/abs/2503.10642

MiniZinc: Solver-Agnostic Modeling

High-Level Language

MiniZinc supports both discrete and continuous optimization and satisfaction problems with an

intuitive, declarative syntax.

Multiple Backends

Solver-agnostic design communicates with CP, MIP, and SAT solvers through FlatZinc

compilation—write once, run anywhere.

Global Constraints

Powerful abstractions like all_different simplify modeling, replacing numerous pairwise

constraints with single declarations.

MiniZinc Example: All Different Constraint

% pairwise binary inequalities

all_different(array[int] of var int:x)=

forall(i,j in index_set(x) where i < j)

x[i] != x[j]

% built-in global constraint

all_different(array[int] of var int:x)=

gecode_all_different(x) % native Gecode version

Global constraints allow users to leverage higher-level abstractions rather than focusing on low-level

decomposition, significantly simplifying the modeling process.

Text2Zinc: Example Timetabling Problem – Description

Text2Zinc: Example Timetabling Problem – Model

Text2Zinc: Example Timetabling Problem – Model

Text2Zinc: Example Timetabling Problem – Model

Text2Zinc: Example Timetabling Problem – Input & Output

Text2Zinc: A Unified Approach

• Description
• Parameters
• Output specification
• Metadata

Ground Truth
Model(s)

LLM
Solver

Input (JSON) Output (JSON)

Solution(s)

Data (DZN) Model (MZN)

Generated
Model

• Objective
• Satisfaction

LL
M

 C
o

p
ilo

t
Te

xt
2Z

in
c

Instance(s)

Solution
Accuracy

Execution
Accuracy

Feedback Loop

Model
~

Output
~

External

Text2Zinc Statistics

567
Total Problems

Natural language

instances

110
Manually Verified

High-quality

curated data

11
Problem Domains

Diverse aplication

areas covered

Our dataset includes instances of mixed of LP, MIPs, and CP problems across 6 different sources
Providing a comprehensive benchmark for natural language to constraint model translation.

Text2Zinc Co-Pilot Approaches

Out-of-the-box LLM

Vanilla prompting, zero-shot,

few-shot performance

Single vs. Multi-Call

1
Chain-of-Thought

Improved reasoning through step-

by-step problem-solving2

Knowledge Graph

Leveraging structured knowledge

as intermediary representation
3

Structured Prediction

Grammar-based model generation

to enforce LLM output

4

Text2Zinc Initial Results (GPT-4)
Solution Approach Execution Accuracy Solution Accuracy

0.33 0.17

Chain-of-Thought (CoT) 0.57 0.28

0.48 0.26

CoT + Code Validation 0.57 0.28

0.63 0.23

CoT + Code & Grammar Val. 0.70 0.25

Compositional 0.44 0.20

Compositional + Code Val. 0.44 0.21

Hugging Face Text2Zinc Leaderboard

Baseline

Knowledge Graph

CoT + Grammar Validation

LLM Calls

1

1

2

2

3

3

4

5

https://huggingface.co/spaces/skadio/text2zinc-leaderboard
https://huggingface.co/spaces/skadio/text2zinc-leaderboard

Text2Zinc Initial Results (GPT-4o Reasoning)
Solution Approach Execution Accuracy Solution Accuracy

0.33 0.17

Chain-of-Thought (CoT) 0.57 – 0.61 0.28 – 0.35

0.48 0.26

CoT + Code Validation 0.57 – 0.81 0.28 – 0.41

0.63 0.23

CoT + Code & Grammar Val. 0.70 – 0.74 0.25 – 0.40

Compositional 0.44 0.20

Compositional + Code Val. 0.44 0.21

Hugging Face Text2Zinc Leaderboard

Baseline

Knowledge Graph

CoT + Grammar Validation

LLM Calls

1

1

2

2

3

3

4

5

https://huggingface.co/spaces/skadio/text2zinc-leaderboard
https://huggingface.co/spaces/skadio/text2zinc-leaderboard

General Observations

1 Execution-Solution Gap

Consistently lower solution accuracies across
strategies indicate complexity of modeling
expertise

2 Compilation Issues

Syntax errors are primary cause of execution
failures, attributed to LLM's limited exposure to
MiniZinc’s specialized syntax

3 Information Sweet Spot

Both too little and too much information can be
detrimental, suggesting an optimal level of context
exists

4 Reasoning vs. Structure

Superior performance of CoT and compositional
approaches suggests how information is processed
matters more than quantity provided

1 Call-to-Action: Dataset Expansion

Encourage community contributions to create more comprehensive resources

2 Intermediate Representations

Explore alternative representations like named entities and semantic graphs

3 Agentic Frameworks

Investigate potential of agentic approaches in capturing nuances of

optimization modeling problems

hf.co/datasets/skadio/text2zinc hf.co/spaces/skadio/text2zinc-leaderboard

INFORMS’25

https://arxiv.org/abs/2503.10642

What’s Next?

1 Call-to-Action: Dataset Expansion

Encourage community contributions to create more comprehensive resources

2 Context Engineering

Explore alternative intermediate representations and semantic graphs

3 Model Improvements

Develop specialized LLMs for optimization and satisfaction tasks

4 Agentic Frameworks

Investigate potential of agentic approaches in capturing nuances of

optimization modeling problems

Holy Grail 2.0

Blueprint for optimization modelling co-pilots with

feedback loop and user interactivity.

Tsouros et. al., 2023

Ner4Opt

Text2Zinc

A unified cross-domain dataset curated to work with

LLM co-pilots and leaderboard to evaluate strategies

to generate MiniZinc models from free-from natural

language text. Singirikonda et. al., AAAI’25

Gala: Global LLM Agents

A global agentic approach with multiple specialized

LLM agents decompose the modeling task by global

constraint type.

Cai et. al. NeurIPS’25

A principled approach to extracting components of

optimization models such as the objective, variables,

and constraints from free-form natural language text.

Kadioglu et. al, Constraints’24

Our Contributions

https://arxiv.org/abs/2308.01589
https://arxiv.org/abs/2308.01589
https://arxiv.org/abs/2503.10642
https://arxiv.org/abs/2503.10642
https://arxiv.org/abs/2509.08970
https://link.springer.com/chapter/10.1007/978-3-031-33271-5_20

The Challenge: Precise Logic & Domain Knowledge

Current State

Notoriously difficult to translate into

correct MiniZinc models. This process

demands both logical reasoning and

modeling expertise.

Problem

General-purpose prompting often

fails to capture all variables and

constraints correctly, especially

for harder optimization problems.

Current approaches using and even

powerful LLMs are "not yet a push-

button technology” for generating

combinatorial models from text.

Motivation

This motivates research into more

structured and guided methods that

break problems into manageable

pieces.

Multi-Agents for LLM Co-Pilots

Multi-step and multi-agent frameworks have emerged as promising solutions for natural language

optimization tasks. By dividing complex problems into manageable pieces, each LLM handles a

simpler reasoning challenge, potentially reducing overall complexity.

01

Chain-of-Experts

Assigns multiple LLM experts with

specific roles (interpreting text,

formulating components, coding,

verifying) coordinated by a central

conductor Xiao et al. [2023]

02

OptiMUS System

Uses LLM-based agent to

iteratively identify parameters,

write constraints, and debug linear

program models

AhmadiTeshnizi et al. [2023]

03

Promising Results

These approaches considerably

improve over single-LLM methods

on complex operations research

problems.

Breaking Down the Complexity Further

Current Limitations

Existing multi-agent approaches still inherit the

full problem complexity rather than focusing on

tractable sub-tasks.

Our Novelty

Gala centers around global constraints:

high-level CP primitives like all_different

that capture common patterns.

Agents meets Constraint Programming

Key Advantage

Gala aligns and combines the key strength of
Constraint Programming with Agentic Frameworks,
turning model generation into a collaboration of
focused experts.

Global Constraints

High-level primitives that concisely represent recurring
patterns such as distinct, resource limits, ordering, and
counting found across planning, scheduling, assignment,
and configuration problems.

all_different

Enforces distinct values across variables

cumulative

Enforces scheduling resource capacity over time

global_cardinality

Limits how many variables take each value

circuit

Creates a Hamiltonian circuit

Each specialized agent focuses only on detecting and
encoding one constraint type, simplifying the reasoning
task dramatically.

Gala Agents

Agentic Solution: Gala Framework

Gala is an agentic framework that addresses text-to-model translation with
global agents: multiple specialized LLM agents decompose the modeling
task by global constraint type.

Specialized Agents

Each agent detects and
generates code for a specific
class of global constraint.

Integration

Assembler agent integrates constraint snippets into complete model.

Decomposition

Problem divided into smaller,
well-defined sub-tasks.

How Agents Work?

Specialized LLM Agents

LLM agent with a specialized
prompt for each global
constraint.
Each agent receives the full
problem description, but its
instructions are local: detect
if the constraint is present and
produce the MiniZinc snippet

Binary Classification + Code

Each agent performs binary
classification (constraint
present or not) followed by
code generation. The agent is
instructed not to produce any
other modeling elements
beyond its constraint.

No Broader Modeling

By isolating each agent's focus,
we simplify the reasoning task.
Unlike previous agentic
approaches, our agents do not
need to understand the entire
problem structure, only
whether a specific pattern
appears.

"You are a MiniZinc modeling assistant specialized in detecting and modeling all_different constraints.
Given a problem description, decide whether it requires one or more all_different constraints.
If it does, generate only MiniZinc code specifying the all_different constraint and its variables.
If it does not, return FALSE."

The Assembler: Bringing It All Together

Assembler LLM takes over once constraint-specific agents return code snippets. Prompted as a MiniZinc
modeler tasked with compiling a complete and coherent model.

01

Declare Variables

Define all decision variables and
domains, renaming or merging for
consistency

02

Analyze Constraints

Decide whether to include provided
global constraints

03

Fill Gaps

Add remaining constraints from
text not covered by hints

04

Define Objective

Determine optimization objective or satisfy goal

05

Finalize Model

Append solver boiler plate and output format

Key Benefit: Much of the heavy lifting is done by specialized snippets, the assembler focuses on gluing
components together and writing boilerplate code.

Initial Results: Evaluation
Framework

We conduct an initial evaluation of Gala, focusing on two critical aspects of
the system's performance:

1

Global Agent Detection

The ability of global agents to correctly detect global constraints in
problem descriptions.

2

End-to-End Performance

The end-to-end performance of the agentic pipeline compared to
baseline prompting strategies and chain-of-thought (CoT).

Global Agent Detection Performance

We evaluate detection performance for seven global constraints using Phi4 on all 567 Text2Zinc instances

Constraint Type Detection Rate (%) False Detection Rate (%)

circuit 100 2.75

all_different 88.1 14.42

increasing 78.6 4.67

global_cardinality 77.8 17.43

lex_less 71.4 6.6

count 67.9 28.3

cumulative 58.3 17.59

Strong Detection Rates

Overall, our agents achieve detection rates around
70% to 80%, with circuit achieving perfect 100%
detection.

Room for Improvement

False detection rates are generally low for rarer
constraints. The main exception is count (28.3%),
Distinguishing counting patterns from numerical
constraints remains a challenge.

Gala End-to-End Modeling Performance

We compare Gala with direct prompting (baseline) and COT on 110 verified Text2Zinc instances.

Model & Strategy Execution Rate (%) Solve Rate (%)

o3-mini Gala 57.27 32.73

o3-mini CoT 52.73 30.91

gpt-4o-mini Gala 33.64 17.27

gpt-4o-mini CoT 31.82 12.73

gpt-oss:20b Gala 17.27 8.18

gpt-oss:20b CoT 16.36 10

gpt-oss:20b baseline 11.81 7.27

Consistent Performance

Gala consistently outperform CoT on stronger
models (o3-mini, GPT-4o-mini) across execution
and solve

Decomposition Advantage

Gains come from agentic assembly with no
model tuning, prompt optimization, or
hyperparameter tuning.

Potential Enhancements

Optimize Global Agents

Replace hand-crafted prompts with systematic optimization,
curated few-shot exemplars, and adversarial negatives. Consider
fine-tuning per global constraint to boost precision and recall.

Unblock the Assembler

Add supervisor to extract variables and objectives before
delegation. Build systematic error taxonomy to map where agents
succeed or fail, driving targeted fixes and feedback loops.

Scale Evaluation

Run stronger LLMs (e.g., GPT-5) and sweep both open- and
closed-weight models. Benchmark on global constraint rich
datasets to better showcase the approach.

hf.co/datasets/skadio/text2zinc hf.co/spaces/skadio/text2zinc-leaderboard

MLxOR@NeurIPS’25

https://arxiv.org/pdf/2509.08970

• Co-Pilot Position Papers: Holy Grail 2.0 (Tsouros et.al. 2023), Co-Pilot Manifesto (Wasserkrug et al. 2025)
• Learning natural language interfaces with neural models, Li Dong, PhD thesis, 2019
• LGPSolver: Solving logic grid puzzles automatically, ACL’20
• Automatic formulation and optimization of linear problems from a structured paragraph, ICSCT’21
• Early efforts (Ramamonjison et al. 2022) focused on linear programming problems using entity recognition and logical forms
• Synthesizing MIP models from NL, Qingyang Li et. al., 2023
• Latex2Solver turns input .tex files into optimization models + symbolic model UI, Ramamonjison et.al, ACL’23
• OptiGuide: LLMs for Supply Chain Optimization, Microsoft, 2023
• MeetMate: Enabling interactive decision support using LLMs and CP, Lawless et al., 2023
• Logic.py: Software verification through logic (Kesseli et. al. 2025)
• Towards an Automatic Optimization Model Generator Assisted with GPT, Almonacid, 2023
• LM4OPT: Unveiling the Potential of LLMs in Formulating Mathematical Optimization Problems, 2024
• Agents: Multi-agent chain-of-experts (Xiao et al. 2023) Optimus (AhmadiTeshnizi et al. 2024) specific to Gurobi and cvxpy
• Data scarcity for LPs in PuLP addressed by data augmentation, leveraging CodeT5 (Prasath and Karande 2023)
• OR-Instruct: Training custom LLMs through solver specific OR-Instruct (Huang et al. 2024a).
• MAMO benchmark (Huang et al. 2024b), focusing on LLMs’ mathematical modeling processes rather than solution correctness
• Streamliners: LLMs for generating streamliners in CP using MiniZinc (Voboril et al. 2024)
• RAG: In-context learning and RAG to build CPMPY constraint models (Michailidis et al. 2024)
• Privacy: Domain-specific applications, focusing on supply chain optimization while preserving data privacy (Li et al. 2023)
• Infeasible: Diagnosing infeasible optimization problems through interactive conversations (Chen et al. 2023)
• Generation: optimization problems from scratch (Jiang et al. 2025)
• MCP: Model context protocol to integrate LLMs and with symbolic solvers (Szeider 2025)

Emerging Literature

https://sites.google.com/view/llm-solve

Strategic Pillars of Enterprise AI @ Fidelity AI Center

AI Learning from Offline Data

Robust, scalable, reproducible features
from structured, unstructured, and
semi-structured datasets.

Selective, TextWiser, Seq2Pat

AI for Learning from Online Feedback

Adaptive, real-time, A/B testing systems
that continuously learn from user
interaction.

Mab2Rec, MABWiser

AI for Decision Making

Large-scale, integrated, (meta)
solvers for resource
management and optimization.

Forge, Balans, PathFinder

AI for Automated Assistants

Extraction and translation of natural language into downstream
tasks and intents for human-computer interaction

Gala, Ner4Opt, Text2Zinc, iCBS (w/ Amazon)

Responsible AI

Horizontal capabilities for explainability, evaluation, fairness,
and bias mitigation across all systems

Jurity, BoolXAI (w/ Amazon)

Open-Source AI at Scale: Establishing an Enterprise AI Strategy [AI Magazine’25]

skadio.github.io

https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.70032
https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.70032
https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.70032
https://skadio.github.io/

	Default Section
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

	ner4opt
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

	text2Zinc
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

	Gala
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62

	Closing
	Slide 63

