
BoolXAI: Explainable AI using
Expressive Boolean Formulas
Innovative Applications of Artificial Intelligence – Deployed Tools

S. Kadıoğlu, G. Rosenberg, K. Brubaker, M. Schuetz, G. Salton, Z. Zhu, E. Zhu, S. Borujeni, H. Katzgraber

Serdar Kadıoğlu
1 Dept. of Computer Science, Brown University
2 AI Center of Excellence, Fidelity Investments

skadio.github.io

https://skadio.github.io/

BoolXAI Overview

1 Design and Functionality

Showcase of BoolXAI's high-level design and core functionality.

2 Optimization Formulation

Presentation of the underlying optimization problem and solution approach.

3 Results

Demonstration of results from public datasets to showcase BoolXAI's performance.

4 Deployed Service

Illustration of a BoolXAI-powered application deployed as an enterprise service.

The Need for Explainable AI

Increasing Complexity

Machine Learning models are

becoming increasingly complex,

making it difficult to understand

and interpret their predictions.

Regulatory Requirements

Explainability is mandatory in

several domains such as finance

and healthcare due to industry

regulations.

Responsible AI

Explainable models help discover

superfluous patterns and avoid

unwanted bias in AI systems.

Limitations of Existing Models

Expressiveness of Boolean
Operators

Decision Trees

The same requires a

decision tree with

19 split nodes which

is less interpretable

Propositional Logic

Using only AND/OR

operators would

require 13 clauses, 11

variables, 29 literals

BoolXAI

BoolXAI can

represent complex

conditions concisely

AtLeast3(f1,..,f5)

Motivation – Checklists

Complex decision-making processes can be expressed
in a clear, interpretable manner using Boolean logic.

AtLeast3 (Cough, Headache, Or(Fever, Chills), Or(Loss
of taste, Loss of smell), Or(Body aches, Muscle aches))

Fever

or chills
1

Loss of taste

or smell

2

Body or

muscle aches

3Headache

and cough

4

Parameterized operators are motivated by checklists,
which are intuitive and widely used in various fields.

Example: a simplified disease checklist
Disease if you have at least three of these symptoms

Comprehensibility

Logical formulas are highly

comprehensible, making

them ideal for explainable

AI applications.

Checklist Analogy

Parameterized operators

like AtLeast are motivated

by checklists as used in

medical symptom lists for

diagnosis.

Succinct Representations

BoolXAI brings these succinct representations in a readily

available tool for downstream applications.

Motivation – Logical
Formulas in XAI

Focus on Tabular Data Classification

Supervised Learning

BoolXAI focuses on

supervised machine learning,

specifically classification

from tabular data.

Industrial Applications

This approach is particularly

relevant for high-stakes

industrial applications where

interpretability is crucial.

Expressive Boolean Formulas

BoolXAI uses expressive Boolean formulas to create

interpretable classification models with tunable complexity.

The Challenge

Our research focuses on developing an

interpretable classifier using

expressive Boolean formulas.

These formulas aim to provide a

balance between model complexity

and interpretability, allowing for more

nuanced decision-making processes

than traditional Decision Trees or CNF

expressions.

The challenge lies in creating a Boolean

model that can capture complex

relationships in data while remaining

interpretable to humans.

This involves developing a system that

can generate and optimize Boolean

formulas based on input data and

desired outcomes.

Rule Optimization Problem
Definition

Rule optimization problem is the foundation for BoolXAI's approach

to finding optimal Boolean formulas for classification tasks.

Complexity of
Boolean Formula

An expressive Boolean formula can be represented as a

combination of operators and literals.

We define the complexity of a formula as the total number of

operators and literals.

Syntax tree of And(Choose2(a, b, c, d), ~e, f):

▪ This rule contains six literals (features/columns of X) and two

Boolean operators (And and Choose(k = 2)).

▪ It has a complexity of eight (sum of literals and operators) and a

depth of two (longest path from root to leaf).

Score vs. Complexity

1 Score: performance
metric (e.g., balanced
accuracy)

2 Complexity: total
number of operators
and literals

3 Tradeoff between score and complexity

In our approach, we consider two key metrics:
score, a performance metric such as accuracy, and
complexity, total number of operators and literals in the Boolean
formula. There is an inherent tradeoff between these two metrics.

Achieving a higher score will require sacrificing some interpretability
by increasing the complexity of the formula. BoolXAI aims to find a
balance between these competing objectives.

BoolXAI Approach

Optimization Problem

BoolXAI formulates the classification task as an
optimization problem to find the smallest logical rule
that satisfies the maximum number of samples.

Expressive Operators

It uses expressive Boolean operators ATLEAST (),
ATMOST(), and CHOOSE() in addition to classical AND/OR

Native Local Optimization

The solution employs native local optimization to search
the feasible space of all possible formulas efficiently.

Native Local Optimization

Native Search Space

BoolXAI optimizes directly in the space of all valid
expressive Boolean formulas, rather than reformulating
the problem in a fixed format like MaxSAT, ILP, or QUBO.

Stochastic Local Search

The search space is explored via a series of (non) local
moves that make changes to the current configuration.

Multi-Start Simulated Annealing

The initial rule is constructed by randomly choosing
literals and operators within the complexity constraints
with multi-started simulated annealing process.

Local Moves in BoolXAI

Non-local Optimization

1 "Non-local"
optimization: large
neighborhood search

2 Explores larger
changes to the
solution

3 Potential for faster improvement
than local moves

"Non-local" optimization refers to exploration of the search space via

moves that change a larger part of the solution, a form of large

neighborhood search. If we can perform non-local moves faster than

getting the same improvement via local moves, then we'll see an

advantage.

Hardware Acceleration

Imagine that you have access to a hardware accelerator,

classical or quantum, that can solve ILP or QUBO problems

extremely fast. How could you use it to potentially speed

up the solver?

Hardware acceleration can be used to perform complex

optimization tasks more quickly, potentially allowing for

faster exploration of the search space or enabling the

solver to consider more complex moves that would be too

computationally expensive otherwise.

Collaborative Development

Academia

California Institute of

Technology and Brown

University contributed

academic expertise.

Financial Technology

AI Center at Fidelity and

Fidelity Center of

Applied Technology

provided industry

perspective.

High-Tech Industry

Amazon Quantum Solutions

and AWS Center of Quantum

Computing offered cutting-

edge technology.

BoolXAI User Base & Quick Start Example

100+
Data Scientists

BoolXAI is available to over 100
data scientists.

3000+
Downloads

Launch in Q4 2024, BoolXAI has
been downloaded over 3000

times in the broader community.

pip install boolxai

Illustrative Results

Dataset Expressive BoolXAI Formula Balanced Accuracy

Airline Customer Satisfaction And(Inflight entertainment ≠ 5, Inflight
entertainment ≠ 4, Seat comfort ≠ 0)

76%

Breast Cancer AtMost1(worst concave ≤ 0.15, worst
radius ≤ 16.43, mean texture ≤ 15.30)

95%

Direct Marketing Or(dur > 393, employed < 5076, mon=mar) 86%

Online Shopper Intent AtMost1(PageValues ≤ 5.55, PageValues
≤ 0, BounceRates > 0.025)

87%

Customer Churn AtMost1(tenure > 5, Contract ≠ Month-
to-month, InternetService ≠ Fiber optic)

82%

BoolXAI rules obtained by the native local solver with max_complexity = 4 across well-known UCI ML datasets.
On average, BoolXAI achieves 80% balanced accuracy with a single Boolean formula of complexity four.

Runtime Performance

500K+
Rows

Dataset size in the case study

100+
Columns

Number of features analyzed

60
Seconds

Runtime on a modern laptop

BoolXAI can process 500,000+ rows and 100+ columns in about 60
seconds on a modern laptop with an Intel i7 2.20 GHz processor using a
single core. This translates to ~0.01 sec per rule optimization iteration.

Practical Considerations &
Key Features

1 Scikit-learn

Used in existing

pipelines.

2 Non-Binary Data

Allows configuring

discretization.

3 Multi-Class & Label

Enables handling of inputs.

Practical Considerations & Key Features

Scikit-learn Interoperability

BoolXAI models can be used in

existing pipelines and hyper-

parameter tuners as scikit

classifiers.

Non-Binary Data Handling

BoolXAIKBinsDiscretizer allows

configuring discretization behavior

for numerical features.

Multi-Class & Multi-Label

Compatibility with scikit-learn

classifiers enables handling of

multi-class and multi-label inputs.

Visualization Options

Users can plot the rules or directed

networkx graph object for further

analysis and interpretation.

Tests & Dependencies & Docs

Only depends on numpy and sklearn

Native optimizer is implemented in

backed without solver dependency.

Boosting, Bagging, Validation

Meta-classifier to focus on most

difficult samples and bagging and

cross validation to avoid overfitting.

Custom Operators Pareto Frontier Parallelization

User-Driven Enhancements

Predefined User Rules

BoolXAI now allows optimizing only
part of a rule, keeping a
user-defined base rule fixed.

Incremental Rule Generation

Users build formulas incrementally,
starting with the single best feature
and optimizing the remainder.

Controlled Complexity

Users introduce features
incrementally and decide when to
stop based on complexity.

EaSe: Explainability-as-a-Service

Interactive Web Service

EaSe is a web service powered by BoolXAI that does
not require programming skills.

Data Upload

Users can upload their input data or provide its path
on Amazon S3 for analysis.

Visualization

EaSe provides BoolXAI rules and visualizations for
easy interpretation.

Incremental Optimization

Users can seed assumptions or extract base rules
from previous runs for incremental re-optimization.

Related Work in XAI

Explaining Black Boxes

Post-hoc explanations for complex

models, including local explanations

(LIME, SHAP, MUSE) and global

explanations that mimic black-box

models.

Interpretable Models

Training inherently interpretable

models, including decision trees, rule

lists, decision sets, and scoring

systems.

Combinatorial Methods

Approaches using MaxSAT, ILP, and

LP for learning interpretable rules,

which are closest to BoolXAI's

approach.

BoolXAI Summary

1 Expressive
Boolean Formulas

Logical rules with tunable

complexity for classification,

going beyond classical

conjunction and disjunction.

2 Effective Training &
Competitive Results

Native local optimization to

search the space of

feasible formulas

efficiently. Competitive

with black-box models.

3 Open-Source Library

Provides a high-level user interface for researchers and

practitioners, available at https://github.com/fidelity/boolxai

pip install boolxai
skadio.github.io

https://skadio.github.io/

	Default Section
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

