
International Joint Conference on Artificial Intelligence, IJCAI, Canada, 2025 

Junyang Cai1 , Serdar Kadıoğlu2,3, Bistra Dilkina1

1 Dept. of Computer Science, Univ. of Southern California
2 Dept. of Computer Science, Brown University
3 AI Center of Excellence, Fidelity Investments 

skadio.github.io

Balans: Bandit-based Adaptive 
LArge Neighborhood Search for 
Mixed-Integer Programming Problems

https://skadio.github.io/


Combinatorial Optimization

Mixed-Integer Programming (MIP) is applicable to important combinatorial optimization problems, 

and hence, improving the efficiency of MIP solving is of great practical and theoretical interest.

Exact Methods

Branch-and-Bound and its extensions, 

are at the core of solving MIPs 

to optimality.

Meta-Heuristic Methods

When proving optimality is beyond reach, 

metaheuristics, such as Large Neighborhood 

Search (LNS), offer an attractive alternative



Initial Solution

Generate an initial feasible solution x0

typically by running BnB for a short time.

Destroy Operation

Given solution xt create a sub-MIP 
by fixing or constraining some variables.

Repair Operation

Re-optimize the sub-MIP to obtain a new solution xt+1

Acceptance Decision

Decide whether to accept xt+1 as the next state 
based on acceptance criteria.

Extends LNS by providing multiple destroy 
heuristics to choose from at each iteration.

The key challenge: how to select the most 
effective neighborhood for each iteration?

Adaptive LNS (ALNS)

Large-Neighborhood Search



Learning to Branch

Bengio et al. 2021; Khalil et al. 2016 
Liberto et al., 2016; Cai et al.2024a

Node Selection

He et al. 2014

Solution Prediction

Kadioglu et al., 2017; 
Ding et al., 2020; Cai et al., 2024b

ML-Enhanced LNS

LNS(MIP) Song et al. 2020
IL-LNS Sonnerat 2021, RL-LNS Wu 2021
CL-LNS Huang et al. 2023b

Heuristic Scheduling

Khalil et al., 2017; Chmiela et al., 2021; 
Hendel, 2022

Algorithm Configuration
Kadioglu et al., 2009

Learning-based methods in MIP solving



Computational Cost

Training is costly and requires carefully curating 

training data with desired properties and distributions.

Limited Generalization

Offline methods have limited generalization to unseen 

larger instances.

Circular Dependency

Training often depends on using exact solvers in the 

first place to create the supervised datasets. 

This defeats the purpose of solving for hard instances.

Domain Adaptation

Adapting offline learning-based methods to new 

distributions and domains remains a challenge.

Limitations of Learning-Based Approaches
Significant drawback of learning-based methods is their heavy dependency on offline training.



On-the-fly, online learning approaches to MIP solving that do not depend on any offline training. 

Online Adaptive Methods

Our focus is on approaches 

that eliminate the dependency 

on offline training, enabling 

dynamic adaptation during the 

solving process.

Leveraging LNS(MIP) Success

Recent success of embedding  

MIP solver within LNS 

outperform default solver, with 

specific neighborhoods like 

local branching relaxation.

Introducing ALNS(MIP)

A meta-solver utilizing 

Adaptive LNS with diverse 

neighborhood definitions, 

dynamically managed by a 

online learning policy.

Our Focus: Online Adaptive Methods



The Challenge of Online Learning
Online learning is non-trivial, but given the significant drawbacks of offline learning, 

it must be tackled on the fly, adaptively for the specific instance at hand.

Multi-Armed Bandit Approach

We show how to cast this as a multi-armed bandit problem 

that treats adaptive neighborhoods as different arm choices 

with unknown reward distributions to be estimated 

during the search.



Bandit algorithms solve online sequential decision-making problems:

• Each arm represents a decision that generates a reward

• The agent faces the exploration-exploitation dilemma:

• Exploit: Use arm with highest expected reward

• Explore: Try new arms to learn more

• The goal is to maximize cumulative reward over time

• Arm rewards are estimated from past decisions using a learning policy

Ideal for our setting as it can learn effective strategies on-the-fly 

without requiring offline training.

Common MAB learning policies:

• ε-Greedy: Select best arm with probability 

1-ε, random arm with probability ε

• Softmax: Select arms with probability 

proportional to their estimated values

• Thompson Sampling: Sample from posterior 

distributions of estimated rewards

Multi-Armed Bandits (MAB)



BALANS
Bandits-based Adaptive Large Neighborhood Search

A novel online meta-solver for MIPs that combines:

Mixed-Integer Programming

Powerful modeling paradigm for 

combinatorial optimization 

problems

Adaptive Large Neighborhood Search

Meta-heuristic that iteratively 

destroys and repairs parts of a 

solution

Multi-Armed Bandits

Online learning algorithm that 

balances exploration and 

exploitation

github.com/skadio/balans pip install balans



1

Significant Performance Improvements

We show that the performance of our bandit-based ALNS(MIP), 

carefully implemented in our Balans solver, significantly improves 

the default MIP solver SCIP, outperforms single LNS(MIP) and 

improves over the state-of-the-art LNS(MIP) on hard instances.

2

Adaptive Neighborhood Exploration

We show that our bandit-based ALNS(MIP) rarely depends on 

the single best neighborhood and instead improves the 

performance by exploring and sequencing other weaker 

neighborhoods.

3

Ablation Studies

Balans as a meta-solver is highly different from scheduling 
heuristics within the BnB tree

Balans is solver agnostic by performing the same set of 
experiments on a different MIP solver Gurobi. 

4

Open-Source Library

We release Balans as an open-source meta-solver for conducting 

ALNS(MIP) available to others with a one-liner from PyPI.

Main Contributions

github.com/skadio/balans pip install balans



Initial Solution

Given an MIP instance as input, we first find an 
initial solution by running an MIP solver with a 
time limit to find the first feasible solution.

Model Instantiation

Instantiate a single MIP model is maintain ed 
throughout the search. The LP relaxation at the 
root node is saved with other information.

ALNS Loop

The initial solution yields the current state to start 
operating ALNS. ALNS is a combination of LNS 
guided by MAB to adapt to diverse operators.

Balans: Online Meta-Solver for MIPs



Destroy Operators
Balans implements eight built-in destroy operators with diverse characteristics:

Crossover [Rothberg, 2007]

Generates a random feasible solution and compares with 
previous state. If discrete vars have the same value, fix them.

DINS [Ghosh, 2007]

Uses LP relaxation and previous solution to bound variables 
with significant differences.

Local Branching [Fischetti and Lodi, 2003]

Allows only a limited number of binary variables to flip by 
adding a constraint to the original MIP.

Mutation [Rothberg, 2007]

Fixes a subset of discrete variables to their values from the 
previous state.

Proximity Search [Fischetti and Monaci, 2014]

Finds a feasible solution with better objective that is as close 
as possible to the previous solution.

Random Objective
Explores the feasible region randomly by replacing the 
objective function with random coefficients.

RENS [Berthold, 2014]

Fixes variables with integer LP relaxation values and restricts 
fractional variables to rounded values.

RINS [Danna et al., 2005]

Compares LP relaxation with previous solution and fixes 
variables with matching values.



Our operators create a diverse portfolio with complementary characteristics:

Problem Type Coverage

Some operators work on specific 

MIP subfamilies (e.g., binary or integer 

only), while others are general. 

When combined together, we cover 

all subfamilies of MIP problems. 

No Tuning Required

Unlike the previous work, we do not 

need to tune destroy size parameters. 

We simply introduce the same operator 

multiple times with varying destroy 

sizes as different options in portfolio.

Distinct Approaches

Each operator has a unique focus, 

rather than mixing different flavors. 

Our online learning sequences these 

distinct operators to obtain effective 

hybrid behavior for each instance.

Operator Characteristics



Local Branching Relaxation

❑ The state-of-the-art LNS(MIP) approach from [Huang et al., 

2023a] has a hyper-parameter to control the destroy size 

that must be chosen carefully for each problem domain. 

❑ In addition, the initial destroy size is then dynamically 

adjusted during the search according to a 

fixed schedule. 

❑ The hybrid nature of lb-relax combined with a tuned 

destroy size and its dynamic adjustment is key to its 

state-of-the-art LNS(MIP) performance.

Balans Approach

❑ Our destroy operators are not mixing different flavors 

together and are designed to be distinct to constitute a 

diverse portfolio.

❑ Effective online learning algorithm would be able to 

sequence these distinct operators in a way to obtain the 

desired hybrid behavior for the instance at hand.

❑ We do not need to tune for the destroy size. We simply 

introduce the same operator multiple times in our portfolio 

with varying destroy sizes, serving as different options to 

choose from during the search.

Comparison with the state-of-the-art LNS (MIP)



State Exploration Neighborhood Exploration

Online Learning

❑ Decides whether the search should continue with the next 

state or discard the move. We consider two complementary 

acceptance criteria:

o Hill Climbing (HC): Mostly exploits yet allows the search to 
progress to next state when the objective value is the same.

o Simulated Annealing (SA): Offers more exploration capacity 
and allows the search to move to worsening next states.

❑ Decides the destroy operator to apply at each state. We 

employ multi-armed bandits for choosing among different 

neighborhoods with three important design decisions:

Distinguishing these two exploration needs

and addressing them separately is a key novelty of our approach.

o Arms: Every pair of destroy and repair operators as a single arm
o Reward mechanism: Four distinct rewards aligned to possible 

outcomes of the accept criterion [best, better, accept, reject]
o Learning policy: MAB learns from historical arm choices 

associated with observed rewards



from balans import Balans, DestroyOperators, RepairOperators
from alns import HillClimbing, MaxRuntime
from mabwiser import MAB, LearningPolicy

# Balans meta-solver for MIPs
balans = Balans(destroy_ops = [DestroyOperators.LocalBranching_10, … ],

repair_ops = [RepairOperators.Repair],
selector = MAB([best, better, accept, reject], LearningPolicy.EpsGreedy(eps=0.5)),
accept = HillClimbing(),
stop = MaxRuntime(100),
mip_solver="scip") # "gurobi" 

# Solve MIP instance
result = balans.solve(“miplib/routing.mps") 

# Best solution and objective 
print("Best solution:", result.best_state.solution())
print("Best solution objective:", result.best_state.objective())

github.com/skadio/balans pip install balans

Quick Start Example



Experiments

Q1: Performance Comparison

o What is the performance comparison between the default MIP, LNS(MIP) 

that commits to a single neighborhood, the state-of-the-art LNS(MIP), and 

our ALNS(MIP) using BALANS?

o Can BALANS achieve good performance without any offline training and 

explore states and neighborhoods simultaneously by adapting to the 

instance at hand on the fly using bandits?

Q2: Arm Selection Distribution

o How is arm selection among the portfolio of neighborhoods distributed in 

our bandit strategy?

o Does BALANS depend on the single best neighborhood, or can it improve 

over the single best by applying weaker operators sequentially in an 

adaptive fashion?



Datasets

D-MIPLIB [Huang et al. 2024] 

We select 10 random instances with a total of 50 instances

• Multiple Knapsack

• Set Cover

• Maximum Independent Set

• Minimum Vertex Cover

• Generalized Independent Set Problem

H-MIPLIB [Gleixner et al., 2021]

We consider a subset that permits a feasible solution within 

20 seconds, yielding 43 instances.

SCIP and Gurobi cannot solve any of these instances to 

optimality within 1 hour, ensuring the hardness of our 

benchmarks.

https://huggingface.co/skadio/datasets/balans

https://huggingface.co/skadio/datasets/balans


Primal Gap (PG) [Berthold, 2006] is the normalized difference 

between primal bound v and precomputed best known obj 

value v∗ and is defined as |v−v∗|/max(|v∗|,ϵ) if v exists and vv∗ ≥ 0.  

Primal Integral (PI) [Achterberg et al., 2012] at time q is the 

integral on [0, q] of the primal gap as a function of runtime. PI 

captures the quality of and the speed at solutions are found.

We conduct experiments on AWS EC2 Trn1 with 128 

vCPUs and 512GB memory. Balans solver integrates:

• ALNS library [Wouda and Lan, 2023]

• MABWiser library [Strong et al., 2019]

• SCIP (v9.0.0) [Bolusani et al., 2024]

• GUROBI (v11.0.0) [Gurobi, 2024]

Time Limits For initial solution, we run the solver for 20 sec. 

Each LNS iteration is limited to 1 minute, except for 

Local Branching to 2.5 minutes, which solves 

larger sub-problems than other operators. 

The time limit to solve each instance is set to 1 hour.

Evaluation Metrics & Setup 



Default MIP Solver

We use SCIP and Gurobi, the state-of-the-art opensource 
and commercial MIP solvers with default settings running 
single thread [Bolusani et al., 2024; Gurobi, 2024].

State-of-the-art LNS(MIP)

We use lb-relax thanks to the original implementation from 
[Huang et al. 2023a]. This algorithm selects the 
neighborhood with the local branching relaxation heuristic.

Single Neighborhood LNS(MIP)

All eight operators are implemented and readily available in 

BALANS to serve in LNS(MIP). By varying the parameters of 
these operators, we obtain 16 different destroy operators 
from 6 unique neighborhoods.

For the accept criterion, we use HC and SA with an initial 
temperature set to 20 and an end temperature set to 1 with 
a step size of 0.1.

Balans ALNS(MIP)

Given the 16 different single destroy operators used in 

LNS(MIP), we build Balans for ALNS(MIP) with a portfolio that 
includes all of the 16 operators.

For the accept criterion, we again use HC and SA. For the 
learning policy, we use e-Greedy and Softmax with numeric 
rewards and Thompson Sampling (TS)  with binary rewards. 

Comparisons



Q1: Default MIP vs. LNS(MIP) vs. BALANS



75%+
Primal Gap Reduction

Overall, we reduce the primal gap 

of SCIP by 75+% across datasets.

50%+
Primal Integral Reduction

We reduce the primal integral of 

SCIP by 50+% across datasets.

Any Balans configuration is better than SCIP and single LNS,

revealing its robust out-of-the-box performance.

Overall Performance

Improves SOTA lb-relax method which requires offline training

and solver-agnostic, similar results with Gurobi. 



Crossover Local Branching Mutation Proximity RENS RINS

D-MIPLIB 
(Softmax linear SA)

6.4% 11% 25% 17.9% 19.8% 19.9%

H-MIPLIB 
(TS accept same SA)

9.4% 0.6% 21% 7.3% 31% 30.8%

The single best operator (Local Branching) is not a popular 

arm at all - only 0.6% usage in H-MIPLIB.

RENS and RINS, which perform poorly alone, account for 

~40% and ~60% of usage in D-MIPLIB and H-MIPLIB 

respectively.

BALANS outperforms MIP and any single best LNS by using 

weaker operators sequentially in an intelligent order.

This demonstrates the power of adaptive operator selection 

through online learning.

Q2: Distribution of Arm Selection



No  Offline Training

Balans eliminates the need for 

computationally costly offline 

training and carefully curated 

datasets.

Modular Architecture

Leverages best-in-class open-

source software for bandits, 

ALNS, and MIP solving in a highly 

configurable framework.

Adaptive Search

Learns effective strategies on-

the-fly for the specific instance 

at hand, adapting to diverse 

problem structures.

Solver Agnostic

Functions as a meta-solver that 

can be applied on top of any MIP 

solver, significantly improving 

their performance.

Balans achieves significant performance improvements 

over state-of-the-art methods with zero tuning.

Our Contributions



Balans solver subsumes the previous literature on LNS(MIP) when run with a single neighborhood 
while serving as a highly configurable, modular, and extensible integration technology 
at the intersection of adaptive search, meta-heuristics, multi-armed bandits, and mixed-integer programming.

Integration Technology

Balans brings together multiple state-of-the-art approaches:

• Adaptive search algorithms

• Meta-heuristics for optimization

• Multi-armed bandits for online learning

• Mixed-integer programming solvers

Key Advantages

This modular design provides several benefits:

• Highly configurable framework

• Extensible design for new neighborhoods

• Solver-agnostic implementation

• No offline training required

Broader Impact



MAB Success Stories

Other successful MAB applications for optimization and beyond

Multi-Agent 

Pathfinding

[Phan et al., 2024]

uses MAB with ALNS 

for multi-agent 

pathfinding

Multi-Objective 

Flow Shop

[Almeida et al., 2020] uses 

MAB with hyper-heuristics 

for multi-objective flow 

shop problems

Maximum 

Satisfiability

[Zheng et al., 2022]

uses MAB for maximum 

satisfiability (MaxSAT)

Personalization & 

Agents

MAB is heavily used in 

recommender systems 

[Kadioglu and Kleynhans,

2024] and game-playing 

agents [Schaul 2019].

github.com/skadio/mabwiser pip install mabwiser



Novel Online Meta-Solver
Balans combines multi-armed bandits with adaptive large 
neighborhood search for effective online learning for MIPs.

Superior Performance
Significant improvements over default MIP solvers, LNS, and 
SOTA approaches on hard optimization instances.

Effective Online Sequencing
Significant performance from sequencing weaker operators 
rather than relying on a single best neighborhood.

Open-Source Software
Released Balans as an open-source meta-solver with high-
level interface, modular architecture, and configurable design.

Future Directions

Boost performance through careful algorithm configuration and portfolio construction

Explore hybrid ALNS(MIP) approaches that incorporate existing offline training methods as additional arms

Develop specialized reward and repair mechanisms for different problem domains

ParBalans: Parallel Multi-Armed Bandits-based Adaptive Large Neighborhood Search
skadio.github.io

github.com/skadio/balans pip install balans

Conclusions

https://arxiv.org/abs/2508.06736
https://skadio.github.io/


AI Center of Excellence @ Fidelity

Optimization & 
Decision Systems

[AAAI’25, Constraints'24, CP’23, 
CPAIOR'23, NeurIPS'22] Text2Zinc & 
Ner4Opt LLM optimization copilots 
github.com/skadio/ner4opt

[IJCAI’25, ArXiv'24] Balans: Meta 
optimization solver with online 
learning github.com/skadio/balans

[ArXiv'24] iCBS: Pruning LLVMs  
using combinatorial optimization 
github.com/amazon-science/icbs

Explainable & 
Responsible AI

[AAAI’25, MAKE'23] BoolXAI 
Explainable AI with Boolean 
formulas 
github.com/fidelity/boolxai

[ACM'24, LION’23, ICMLA'21] 
Jurity Fairness & bias mitigation 
github.com/fidelity/jurity

Machine Learning & 
Recommendations

[AAAI’24, AMAI’24, CIKM’22] 
Mab2Rec Multi-armed bandit 
recommender systems 
github.com/fidelity/mab2rec

[TMLR’22, IJAIT’21, ICTAI’19] 
MABWiser Contextual bandits 
github.com/fidelity/mabwiser

Embeddings & 
Data Processing at Scale

[AI Magazine'23, AAAI'22] Seq2Pat
Sequential pattern mining 
github.com/fidelity/seq2pat

[AAAI'21] TextWiser
NLP/text featurization 
github.com/fidelity/textwiser

[CPAIOR'22] Selective
Tabular feature selection 
github.com/fidelity/selective

[ACM’23] Read-Write-Learn
Self-learning for handwriting 
recognition

[JDSA’21] Uncertainty prediction 
using Bayesian deep learning

https://github.com/skadio/ner4opt
https://github.com/skadio/balans
https://github.com/amazon-science/icbs
https://github.com/fidelity/boolxai
https://github.com/fidelity/jurity
https://github.com/fidelity/mab2rec
https://github.com/fidelity/mabwiser
https://github.com/fidelity/seq2pat
https://github.com/fidelity/textwiser
https://github.com/fidelity/selective



