



# Forge: Foundational Optimization Representations from Graph Embeddings

University of Southern California, USC ORAI Research Seminar, 2025



Serdar Kadıoğlu

<sup>1</sup> Dept. of Computer Science, Brown University

<sup>2</sup> Al Center of Excellence, Fidelity Investments



skadio.github.io



## Learning & Reasoning

#### Data Science: ML/DL/NLP/LLMs/etc.

Focuses on machine learning using historical data to identify patterns and make predictions. Excels at pattern recognition, classification, and forecasting.

#### **System I - Predictive Models**

- Learning from historical data patterns
- Probabilistic predictions and insights
- Ideal for unstructured problems
- Applications include recommendation systems, image recognition, and natural language processing

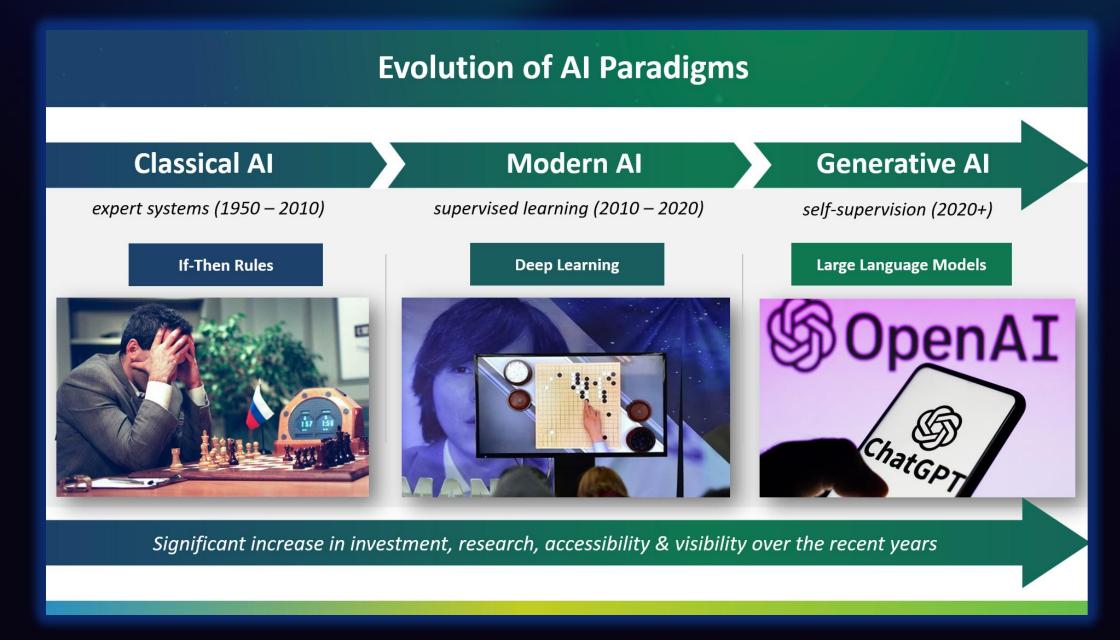
#### **Decision Science: OR/MIP/CP/SAT/LS/etc.**

Focuses on **combinatorial satisfaction and optimization** using logical and mathematical models. Provides provable optimality and explicit reasoning.

#### **System II - Prescriptive Models**

- Mathematical and logical formulations
- Provably optimal for deterministic environments
- Perfect for structured problems
- Applications include verification, planning, scheduling, routing, and resource allocation

## Learning & Reasoning



The Evolution of Al Paradigms: From Classical Al to Modern and Generative Al (AAAI YouTube)

## Strategic Pillars of Enterprise AI @ Fidelity AI Center



#### **Al Learning from Offline Data**

Robust, scalable, reproducible features from structured, unstructured, and semi-structured datasets.

Selective, TextWiser, Seq2Pat



#### Al for Learning from Online Feedback

Adaptive, real-time, A/B testing systems that continuously learn from user interaction.

Mab2Rec, MABWiser



#### **Al for Decision Making**

Large-scale, integrated, (meta) solvers for resource management and optimization.

Forge, Balans, PathFinder



#### **AI for Automated Assistants**

Extraction and translation of natural language into downstream tasks and intents for human-computer interaction.

Gala, Ner40pt, Text2Zinc, iCBS



#### **Responsible AI**

Horizontal capabilities for explainability, evaluation, fairness, and bias mitigation across all systems.

**Jurity, BoolXAI** 

## Strategic Pillars of Enterprise Al @ Fidelity Al Center

Received: 26 July 2025 | Revised: 27 August 2025 | Accepted: 2 September 2025

DOI: 10.1002/aaai.70032

SPECIAL TOPIC ARTICLE

Open-source AI at scale: Establishing an enterprise AI strategy through modular frameworks

#### Serdar Kadıoğlu<sup>1,2</sup>

<sup>1</sup>AI Center of Excellence, Fidelity Investments, Boston, Massachusetts, USA

<sup>2</sup>Department of Computer Science, Brown University, Providence, Rhode Island, USA

#### Correspondence

Serdar Kadıoğlu

Email: serdark@cs.brown.edu

#### Abstract

We present a comprehensive enterprise AI strategy developed within the AI Center of Excellence at Fidelity Investments, emphasizing the strategic integration of open-source AI frameworks into scalable, modular, and reproducible enterprise-grade solutions. Our approach is structured around five key pillars: learning from offline data, learning from online feedback, intelligent decision-making, automated assistants, and responsible AI practices. Through a suite of 12 open-source libraries, we demonstrate how modular and interoperable tools can collectively enhance scalability, fairness, and explainability in real-world AI deployments. We further illustrate the impact of this strategy through three enterprise case studies. Finally, we distill a set of best deployment practices to guide organizations in implementing modular, open-source AI strategies at scale.



## Mixed-Integer Programming (MIP)

MIP formulates combinatorial optimization problems with both continuous and integer variables.

$$f(x) = \min c^T x \mid Ax \le b, x \in \mathbb{R}^n, x_j \in \mathbb{Z} \ \forall j \in I$$

## **LP Relaxation**

Obtained by relaxing integer constraints to continuous. Standard bounding procedure.

## **Integrality Gap**

The integrality gap measures the difference between LP relaxation and optimal MIP.

## Learning & Reasoning Hybrids in Optimization

## **Existing ML-OR Integration**

- Algorithm configuration procedures
- Variable and constraint selection
- Branching strategies
- Cut selection
- Node selection
- Tree-search configuration

Balans (IJCAI'25), Dash (EJOR'16) 3S (CP"11), ISAC (ECAI'10)

## **Emerging NLP-OR Integration**

- Named entity recognition for optimization
- Natural language interfaces for solvers
- Automated model formulation
- Explanation generation
- Interactive modeling assistants
- Domain-specific optimization co-pilots

Gala (NeurlPS'25), Text2Zinc (AAAI'25) Ner4Opt (Constraints'24), iCBS (MAKE'24)



# Learning-Based Methods Face Practical Limitations

## **Heavy Training Dependency**

Training is computationally costly and depends on **carefully curating datasets** with desired properties and distributions.

## **Limited Generalization**

Adapting learning-based methods to **new distributions and domains** remains a significant challenge in the field.

## **Solver Dependency Paradox**

Ironically, **training depends on optimization solvers** to create labeled datasets, defeating the purpose of improving solving for hard instances.

## Vision: A Foundational Model for Optimization



## Inspiration from Other Domains (CV, NLP)

Foundational methods in

text and image embeddings

have achieved remarkable

success through

unsupervised learning on

abundant data.



## **Key Question for Optimization**

Can we leverage publicly available MIP instances to develop a pre-trained, general-purpose foundational model for MIP representations?

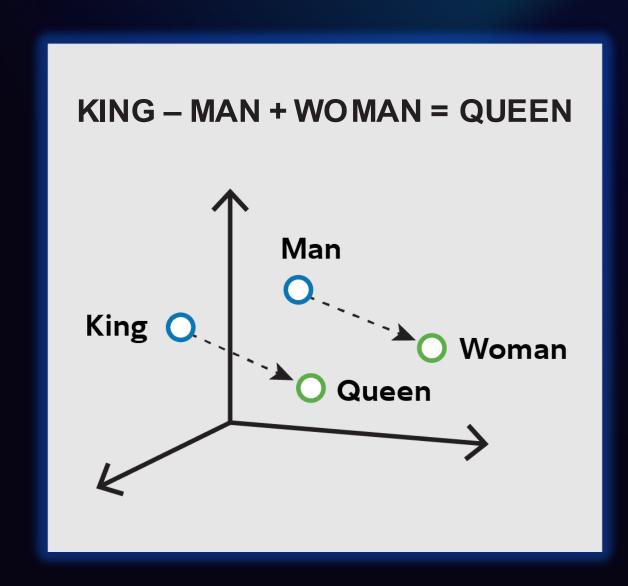


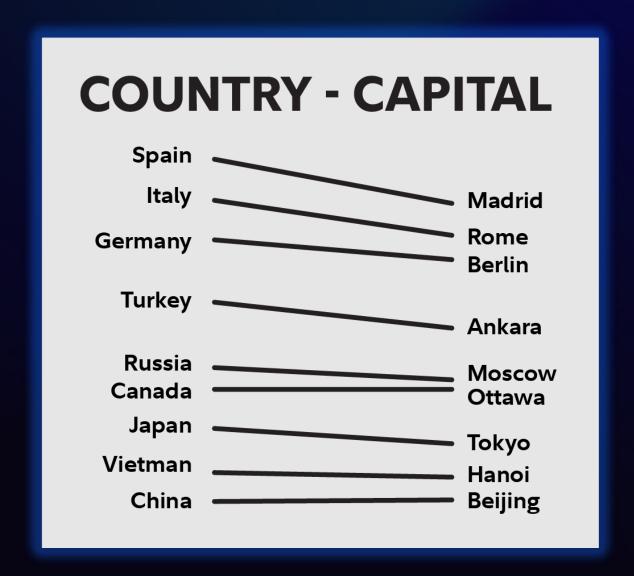
## Multiple Scenarios & Applications

#### A single pre-trained

foundation model that serves multiple optimization tasks across varying problem domains and sizes.

## Vision: A Foundational Model for Optimization





## Vision: A Foundational Model for Optimization



<u>Schloss Dagstuhl - Leibniz Center for Informatics - Seminar on Data-Driven Combinatorial Optimization (2022)</u>

## The Growing Success of ML-Based Approaches

# Meta-Learning Frameworks Zhou et al. (2023) propose methods that generalize across vehicle routing problem variants of different sizes but remain limited to routing. LLM-Based Methods 3

#### **Multi-Task Approaches**

Cai et al. (2025a) introduce frameworks for **backdoor prediction and solver configuration**, trained for each problem.

Li et al. (2025) use evolutionary frameworks to generate **diverse MIP problems but require supervision** and many pre-solved instances.

## The Gap: No General-Purpose Optimization Embeddings Exist Today

## **Problem-Specific**

Generalize across tasks but confined to one problem domain (e.g., vehicle routing).

#### Task-Specific

Scale across problem sizes and variants but **limited to one optimization task**.

#### **Supervised**

Rely on pre-solved instances and costly data labeling, hindering real-world adaptability.

## Forge: Foundational Model for MIP Embeddings

Generate MIP embeddings through pre-training to learn **structural representations** at the **instance level** in an **unsupervised manner**, using a broad distribution of MIP instances **without access to their solutions**.



## **From Natural Language Processing**

We adopt the **concept of a vocabulary to represent the latent space** of optimization problems enabling instance-level representations.



## **From Computer Vision**

We leverage **vector quantization to preserve global information**, addressing the limitations of GNN-based approaches in prior work.

## **Our Contributions**



#### **Foundational Model**

Forge captures **both local and global structures**. A single pre-trained model provides embeddings at multiple levels: instance, variable, constraint.



## **Unsupervised Generalization**

Forge embeddings cluster **previously unseen instances** across diverse problem types with high accuracy without any supervision.



## **Supervised Adaptability**

Pre-trained embeddings can be **fine-tuned on diverse downstream tasks** using minimal additional data and low-cost labeling strategies.



## **Solver Integration**

Forge predictions **integrate into Gurobi** demonstrating consistently lower primal gap across tasks, domains, and sizes.



## **ML** Augmentation

Evaluate against state-of-the-art methods, **improving their performance** on large sets of instances they were trained on, **yet unseen by Forge.** 

## **Our Contributions**



## **Foundational Model**

Forge captures both local and global structures. A single pre-trained model provides embeddings at multiple levels: instance, variable, constraint.



## **Unsupervised Generalization**

Forge embeddings cluster **previously unseen instances** across diverse problem types with high accuracy without any supervision.



## **Supervised Adaptability**

Pre-trained embeddings can be **fine-tuned on diverse downstream tasks** using minimal additional data and low-cost labeling strategies.



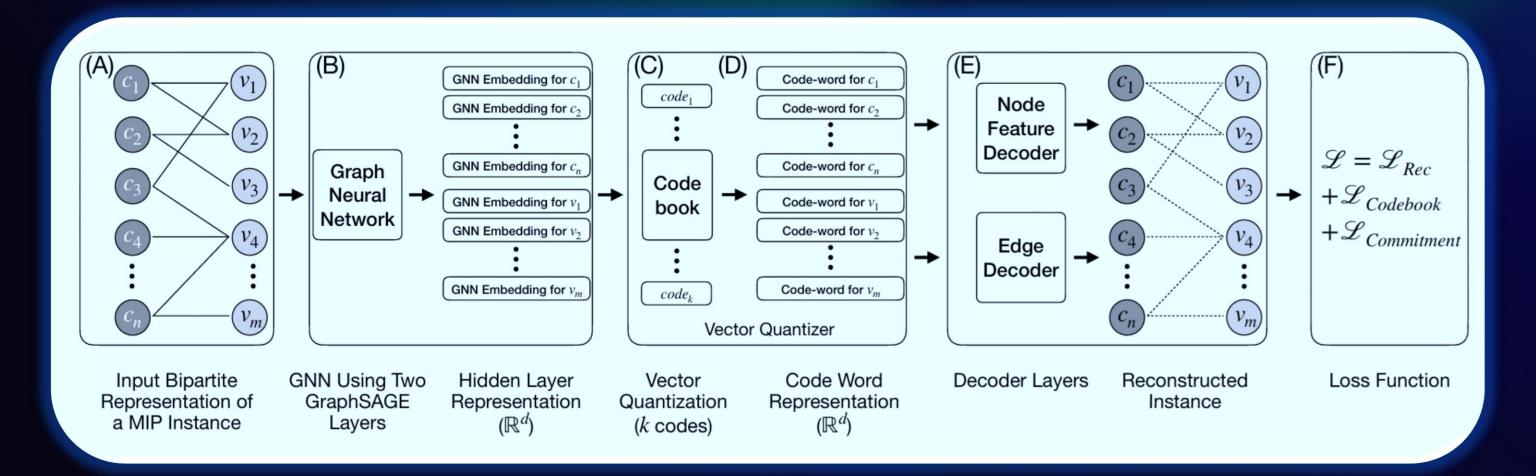
## **Solver Integration**

Forge predictions **integrate into Gurobi** demonstrating consistently lower primal gap across tasks, domains, and sizes.



## **ML** Augmentation

Evaluate against state-of-the-art methods, improving their performance on large sets of instances they were trained on, yet unseen by Forge.



## 1 High-Level Idea

Forge uses a **vector quantized graph autoencoder** to reconstruct node features and edges. It is pretrained across diverse problems and sizes to learn generic MIP representations without dependency on optimal solutions.

## 2 Architecture

The architecture combines **bipartite graph**, **GNN embeddings**, **vector quantization with a codebook**, and **reconstruction** objectives to learn structural patterns in an unsupervised manner.

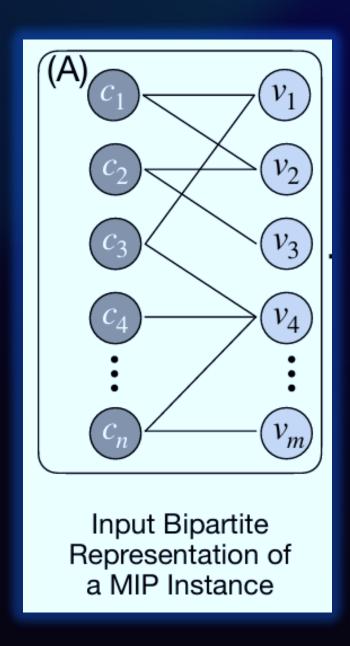
## A) MIP-to-Bipartite Representation

Given a MIP instance, we start with its **bipartite representation** (Gasse et. al. 2019) and **node features**. Each node represents a constraint or variable, with edges indicating which variables are part of which constraints.

**Node Features** Forge uses **only basic properties** of the input instance.

- Constraint nodes: 4 features (sense: <,=,> and RHS value)
- Variable nodes: 6 features (type: bin, int, cont, ub/lb, objective coeff)
- **Total:** 10-dimensional vector per node

**Key Advantage: No dependency on solving the instance** or accessing internal solver information.



## B) Bipartite to GNN Embeddings

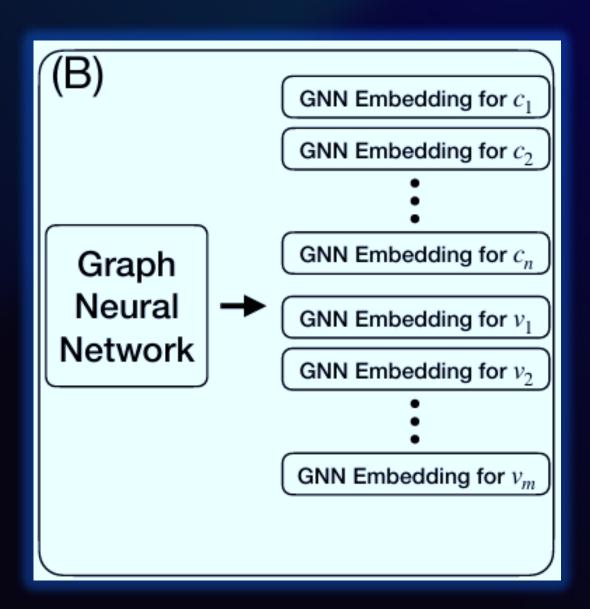
The bipartite graph with 10-dimensional input features is passed into a **Graph Neural Network** to generate embeddings for each constraint and variable node.

#### **GraphSage Layers**

Forge uses **two GraphSage layers** that project each input node into a d-dimensional embedding space.

#### **The Locality Challenge**

GNNs capture **local variable and constraint-level information**, struggle with global information due to inherent locality bias (Feng et. al. 2025).



## C) Vector Quantized Codebook

To preserve global structure, we introduce a vector quantized codebook with k discrete codes. These codes act as a 'vocabulary', akin to language models, across MIP instances of various domains and difficulties.



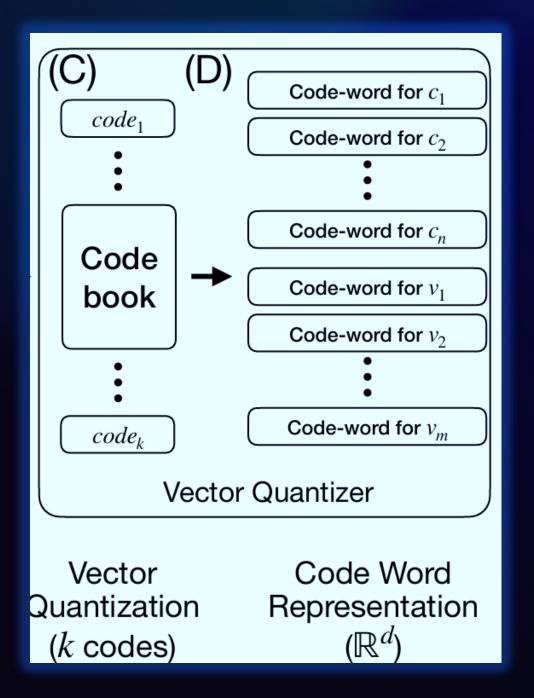


## **Inspiration from Computer Vision**

The design follows approaches developed **in computer vision** and structure-aware graph tokenizer extensions (Yang et. al. 2024)

## **Preserving Global Structure**

By utilizing discrete codes, Forge circumvents the over-smoothing issue and captures the global structure of MIP instances.



## D) GNN-to-Codeword Mapping

**GNN embeddings are passed into a vector quantizer** which consists of a codebook with k codes. The codebook maps each node to a discrete code.

## **Code Assignment**

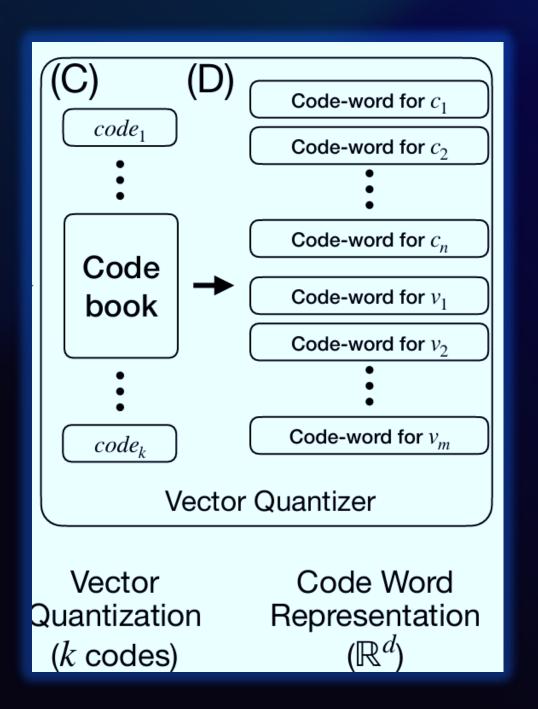
Each node in the bipartite graph is **assigned a discrete code** from the codebook.

## Alignment

The codewords are **aligned** with the dimensionality of the hidden GNN layers.

## **Codeword Mapping**

Each code in the codebook is then mapped into a ddimensional codeword, producing codeword representations for constraints and variables.



## E) Codeword-to-Bipartite Reconstruction

**Codewords** corresponding to each constraint and variable node are used to **reconstruct the original bipartite representation** of the MIP instance.

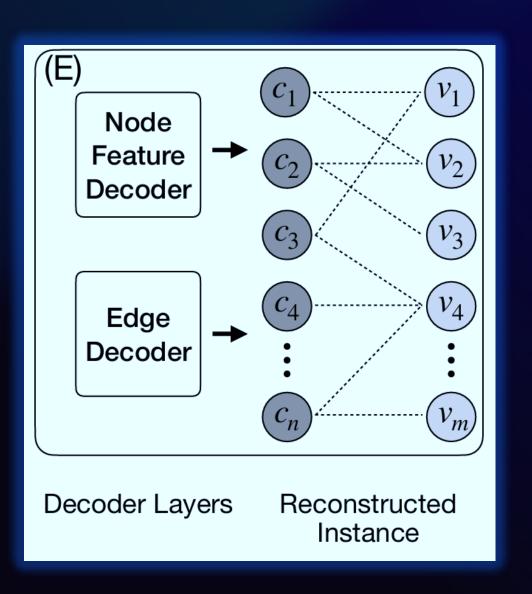
#### **Reconstruction Process**

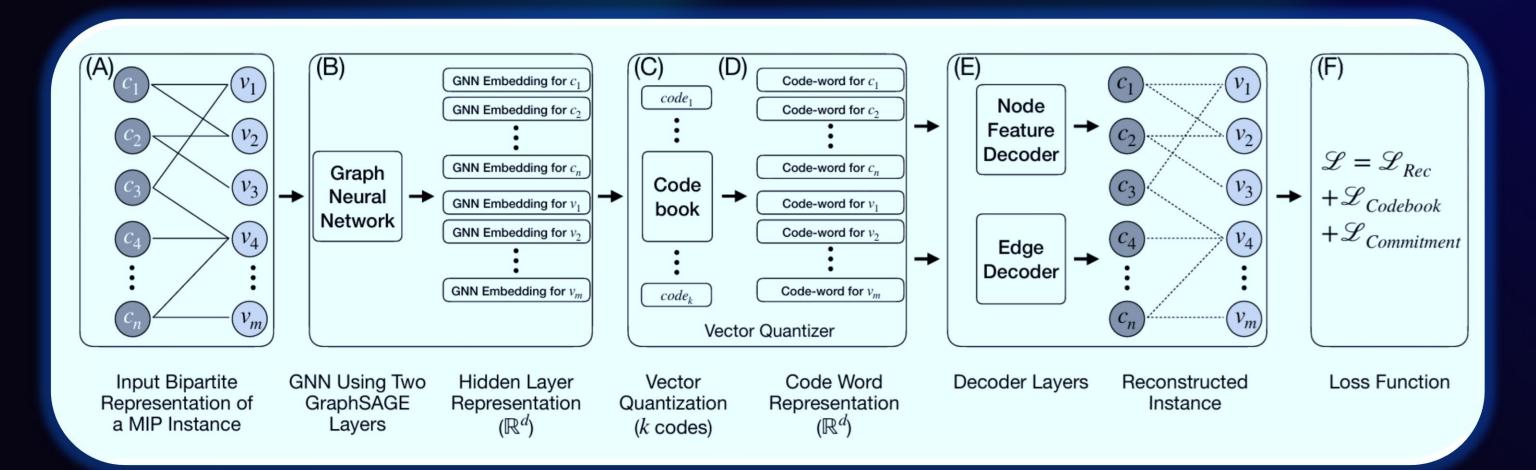
Codewords are passed into **linear decoders** to reconstruct:

- Node feature decoder
- Edge structure decoder

#### **Unsupervised Learning**

By reconstructing the input,
Forge learns from the structure
of MIP instances without
requiring labels or solutions.





## F) Loss Function

The loss function minimizes **edge reconstruction** loss, **node feature reconstruction** loss, and losses related to **vector quantization**.

$$L = L_{Rec} + L_{Codebook} + L_{Commitment}$$

#### **Reconstruction Loss**

Measures how well the model reconstructs the **original bipartite graph** structure and node features.

## **Codebook Loss**

**Moves codewords closer** to node embeddings, similar to k-means clustering.

#### **Commitment Loss**

Encourages **node embeddings to commit** to their assigned codewords.

## Components of the Loss Function

The loss function components work together to learn meaningful representations through **reconstruction** and **vector quantization**.

1 Codebook Loss Intuition

Can be interpreted as k-means clustering, where **codewords** (cluster centroids) move closer to node embeddings while embeddings are fixed via stop-gradient.

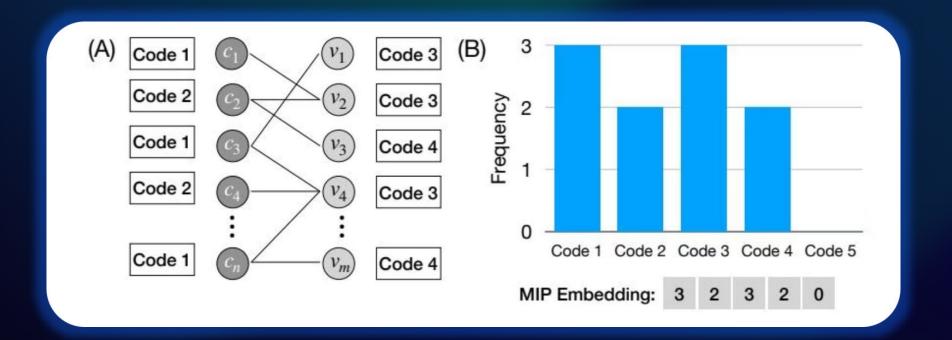
**2** Commitment Loss Intuition

Fixes codewords using stop-gradient and **moves embeddings towards codewords** instead.

3 Balancing Act

The hyperparameter  $\alpha$  weighs the importance of the commitment loss, balancing the two objectives.





## What does Forge Produce?



## **Local Representations**

Each constraint and variable node is assigned a discrete code mapped to a codeword, providing fine-grained embeddings.



## **Global Representations**

Instance-level embeddings
are created from the
distribution of codes across
all nodes in the MIP instance.



## **Embedding Structure**

Each instance is represented by a vector of size |codebook|, where each value indicates the frequency of the corresponding code.

## **Our Contributions**



#### **Foundational Model**

Forge captures **both local and global structures**. A single pre-trained model provides embeddings at multiple levels: instance, variable, constraint.



## **Unsupervised Generalization**

Forge embeddings cluster **previously unseen instances** across diverse problem types with high accuracy without any supervision.



## **Supervised Adaptability**

Pre-trained embeddings can be **fine-tuned on diverse downstream tasks** using minimal additional data and low-cost labeling strategies.



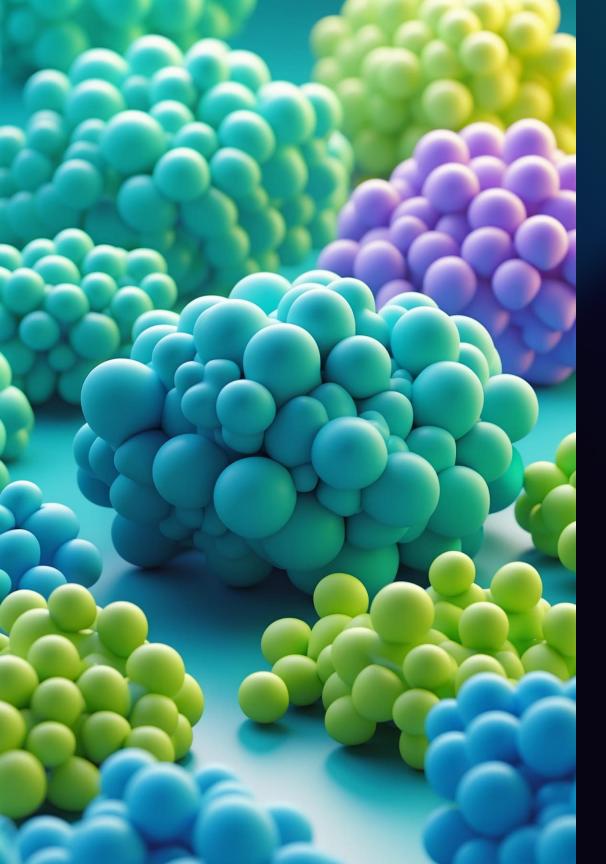
## **Solver Integration**

Forge predictions **integrate into Gurobi** demonstrating consistently lower primal gap across tasks, domains, and sizes.



## **ML** Augmentation

Evaluate against state-of-the-art methods, improving their performance on large sets of instances they were trained on, yet unseen by Forge.



# Initial Analysis: Clustering Unseen Instances

We evaluate Forge embeddings on clustering unseen instances across various problem domains, comparing against two baseline approaches.

1 Training

**MIPLIB** instances and its relaxation

2 Testing

**D-MIPLIB** instances across 21 domain-difficulty pairs

**Evaluation** 

Quantitative (NMI score) and qualitative (visualization) analysis

## **Training Configuration**

## **Training Data**

600 instances from MIPLIB,

sorted by size to ensure bipartite graphs fit on GPU memory. Generated **two**additional instances per MIPLIB instance by randomly dropping 5% and 10% of constraints.

Total: 1,800 MIP instances

## **Data Augmentation**

Dropping constraints only relaxes the problem, providing valid augmented training instances without changing the fundamental structure.

## **Model Architecture**

Two GraphSage layers with d=1024 dimensions and a codebook with k=5000 codes (vocabulary size).

## **Test Dataset: D-MIPLIB**

We evaluate on **1,050 instances from D-MIPLIB** (Weimin et. al. 2024) categorized into **21 domain-difficulty pairs**, covering a broad spectrum of problem types and complexity levels.





## **Baseline Comparisons**

#### **Mean Readout**

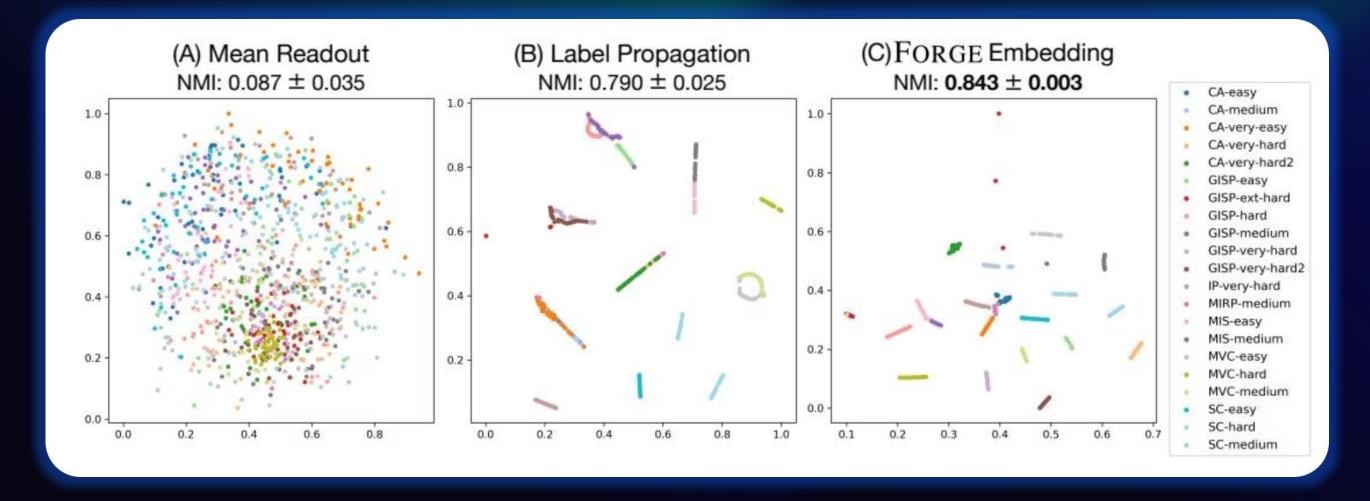
**Averages all GNN node embeddings** within the trained Forge model. Ablation without vector quantization.

## **Label Propagation**

**Two-hop label propagation** on the 10-dimensional static node features and averages the resulting node vectors.

## **Forge Embeddings**

Uses the **distribution of discrete codes** assigned to constraints and variables as instance-level embeddings.



0.087

0.790

0.843

#### **Mean Readout**

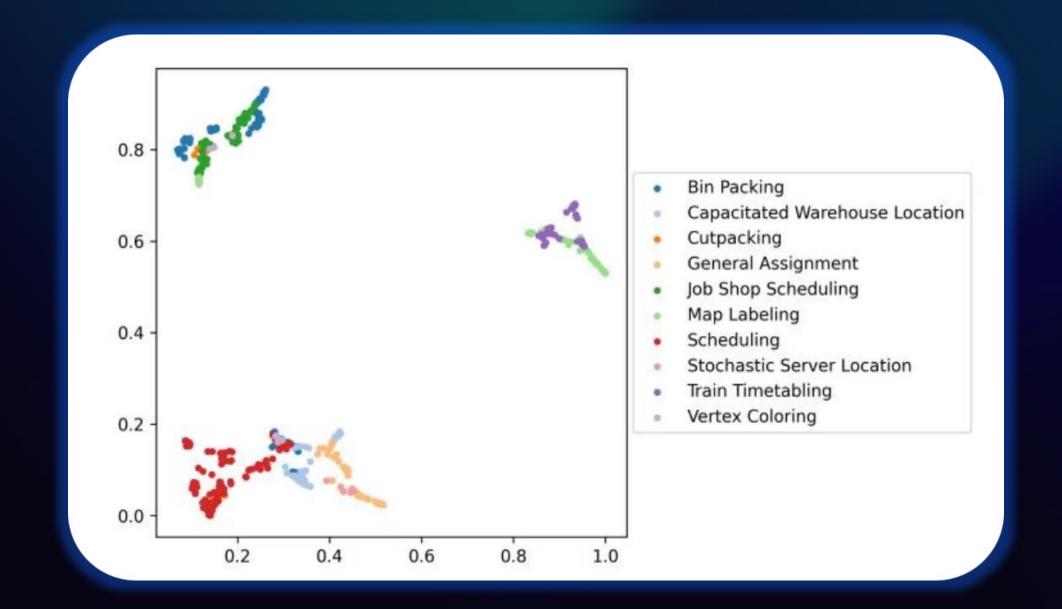
Only slightly better than random (0.047). Suffers from oversmoothing when averaging dense GNN embeddings.

## **Label Propagation**

Better performance operating directly on sparse input features, avoiding over-smoothing.

## **Forge Embeddings**

Best performance by utilizing distribution of discrete codes, circumventing over-smoothing and capturing global structure.



- ☐ We repeat the experiment using our MIPLIB-pretrained Forge to **cluster strIPlib instances**.
- ☐ We select 50 instances from each of 10 previously unseen problem types.
- ☐ Forge cleanly clusters different problems despite never seeing these instances.
- ☐ Interesting patterns: Train Timetabling and Map Labeling appearing close to each other, potential TL opportunities.



## **Set Cover Problem**

Find smallest number of subsets that cover all elements. A covering problem with ≥ constraints.

#### **Vertex Cover Problem**

Find smallest set of vertices such that every edge has at least one endpoint. Also, a covering problem.

## **Bin Packing Problem**

Find smallest number of bins that pack all items within capacity. A packing problem with ≤ constraints.

## **Independent Set Problem**

Find largest set of vertices with no adjacent nodes. Also, a packing problem, complementary to Vertex Cover.



# Vector Arithmetic in Latent Optimization Space

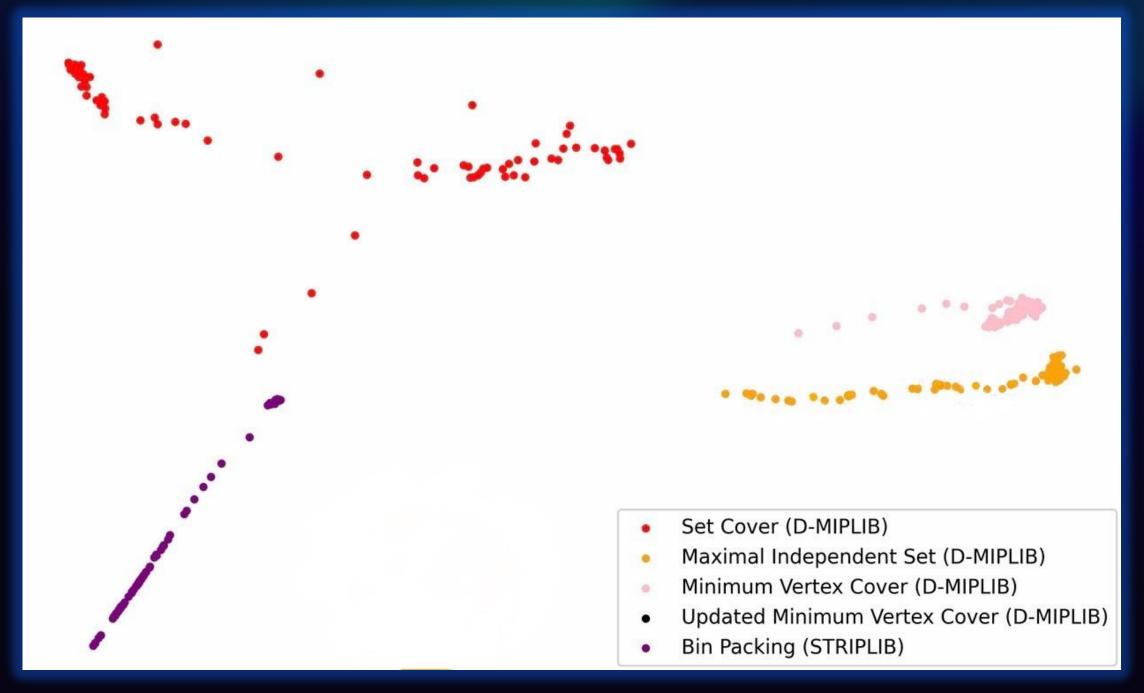
VertexCover − SetCover + BinPacking ≈ IndependentSet

#### **Experimental Setup**

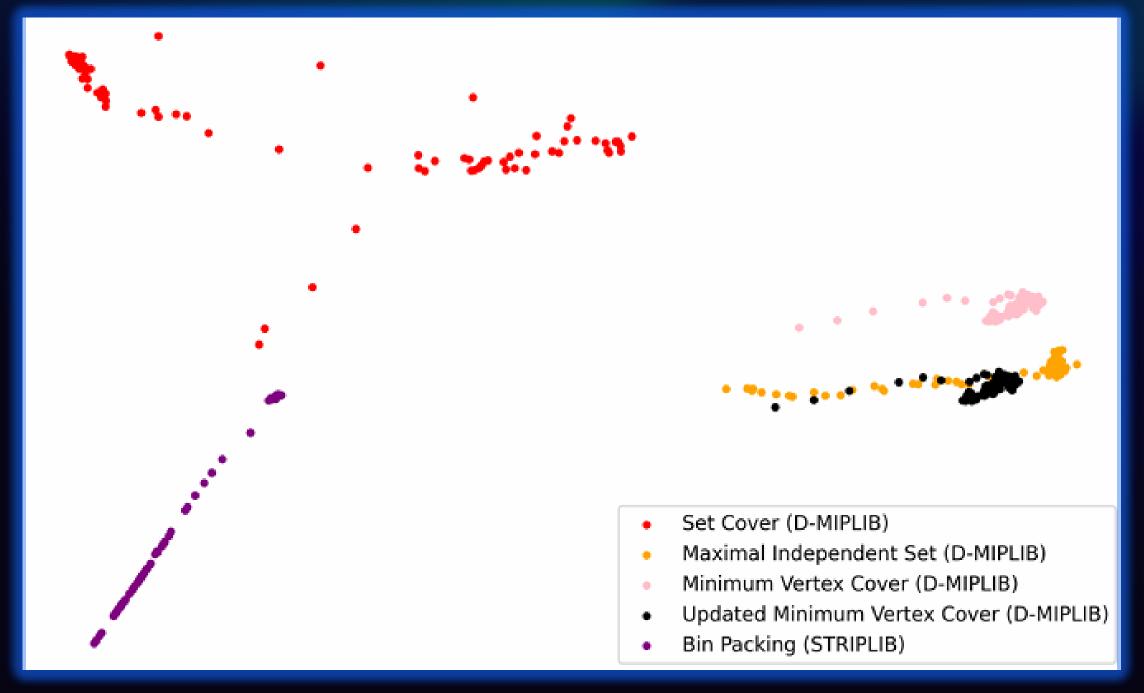
- Fixed graph size: 1,000 vertices
- 50 random instances per problem
- Controlled difficulty: solvable within 60s

#### Methodology

Compute **mean embeddings** for each problem type, calculate difference vector between covering and packing, apply transformation to Vertex Cover instances.



Updated **Vertex Cover instances** (shown in black) move closer to **Independent Set instances** after applying the transformation. This validates that **meaningful semantic directions** exist in the optimization embedding space.



Updated **Vertex Cover instances** (shown in black) move closer to **Independent Set instances** after applying the transformation. This validates that **meaningful semantic directions** exist in the optimization embedding space.

# **Our Contributions**



### Foundational Model

Forge captures **both local and global structures**. A single pre-trained model provides embeddings at multiple levels: instance, variable, constraint.



#### **Unsupervised Generalization**

Forge embeddings cluster **previously unseen instances** across diverse problem types with high accuracy without any supervision.



### **Supervised Adaptability**

Pre-trained embeddings can be **fine-tuned on diverse downstream tasks** using minimal additional data and low-cost labeling strategies.



# **Solver Integration**

Forge predictions **integrate into Gurobi** demonstrating consistently lower primal gap across tasks, domains, and sizes.



## **ML** Augmentation

Evaluate against state-of-the-art methods, improving their performance on large sets of instances they were trained on, yet unseen by Forge.

# **Supervised Experiments**

We now shift to **supervised evaluations** to demonstrate Forge's utility in **improving MIP solving** across fundamentally different downstream tasks.

#### **Task Selection Criteria**

Tasks must **provide utility** for MIP solving, enable **fair comparison**, be **radically different** from each other, and be **solver-agnostic** 

### Task I: Integrality Gap Prediction

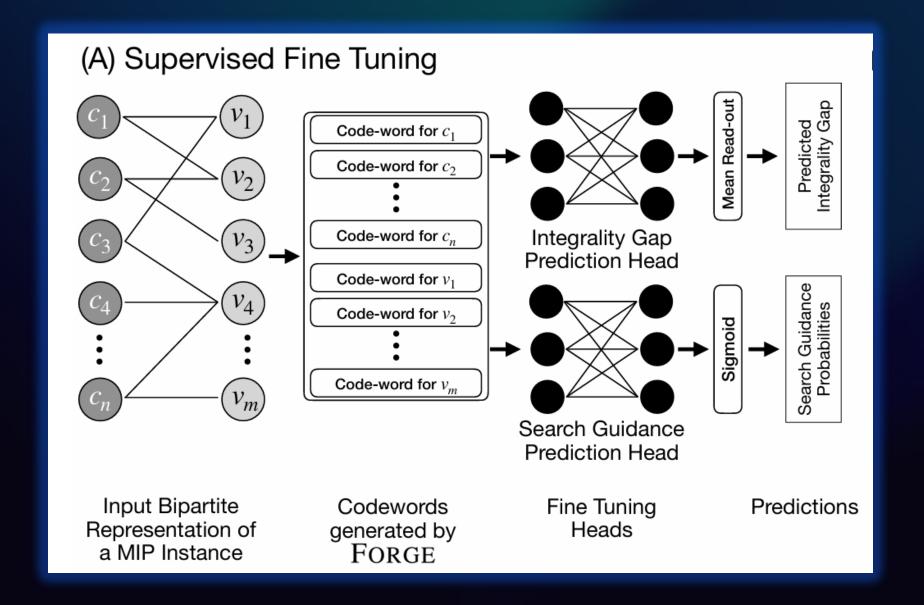
Used to **generate a pseudo-cut** added to the original problem formulation to tighten its bound at the beginning of the search.

#### **Same Pre-trained Model**

We use the **same pre-trained**Forge model for all tasks,
problems, sizes, validating
general applicability

#### Task II: Variable Guidance

Used to **provide hints to the solver** during search about which variables are likely to be in the solution.



### **Fine-Tuning Philosophy**

The same pre-trained model then fine-tuned on a small and cheaply labeled data to learn prediction heads for completely different tasks.

### **NLP Analogy**

Fine-tune prediction heads for **entity extraction** in a specific domain (e.g., finance) using a small set of labels. Revive the success of foundational models



# Training the Foundational Forge Model

## **Expanded Dataset**

- 1,800 **MIPLIB** instances
- 1,050 **D-MIPLIB** instances
- Total: **2,850 MIP** instances

# **Model Specifications**

- 3.25 million parameters
- Two GraphSage layers
- d = 1,024 dimensions
- k = 5,000 codebook size

# Task I: Predicting the Integrality Gap

There is **no magic constant** that one could always use heuristically, wide distribution %5-95% Makes integrality gap prediction a deliberate learning task.

### Challenge

Predict gap without solving to optimality

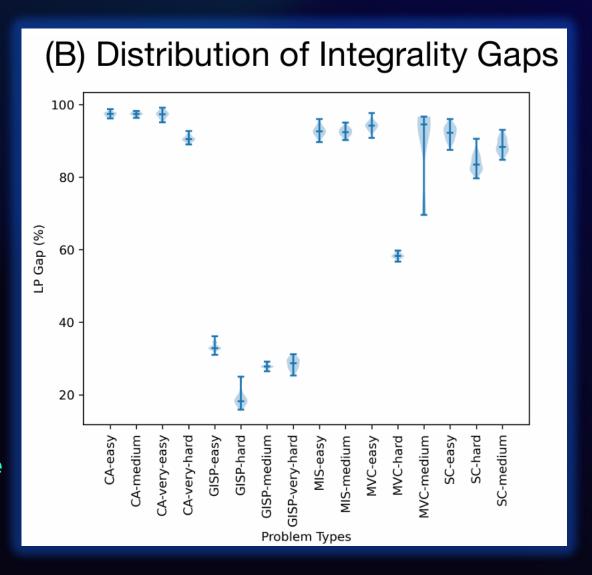
# **Application**

Generate pseudo-cut as additional constrain

#### **Risk & Benefit**

Incorrect prediction may over/underestimate objective

Pseudo-cuts can speed up solving by tightening bounds



# Integrality Gap: Training Setup

We train on **450 instances** from CA, SC, and GIS problems with varying difficulty levels. This is **considerably smaller** than the pre-training dataset (2850 instances)

## **Training Data**

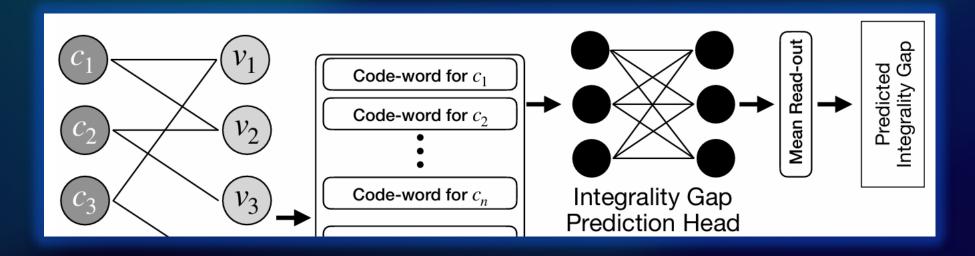
- CA: very-easy, easy, medium
- SCP: easy, medium, hard
- GISP: easy, medium, hard
- 50 instances per category

#### **Label Collection**

Each instance solved with Gurobi using 120s.

Label is the ratio between integer solution at timeout and LP relaxation. Conservative label strategy does not require solving to optimality.

# Fine-Tuning



1 Prediction Head

Dense layer added to pre-trained Forge model, takes codewords as input and outputs a real number using mean readout

2 Training Objective

Regression task trained with mean error loss in an end-to-end manner

Minimal Data

Only 450 labeled instances needed, with **cheap labeling strategy** that doesn't require optimality

# Integrality Gap: Test Setup

Evaluate on **50 very-hard instances** each of CA, SC, GIS, and MVC.

Fine-tuning did not include 'very hard' category, and MVC is entirely unseen.

1

#### **Prediction**

Forge predicts integrality gap for each test instance

2

### **Pseudo-Cut Generation**

Adjust initial LP relaxation objective based on prediction

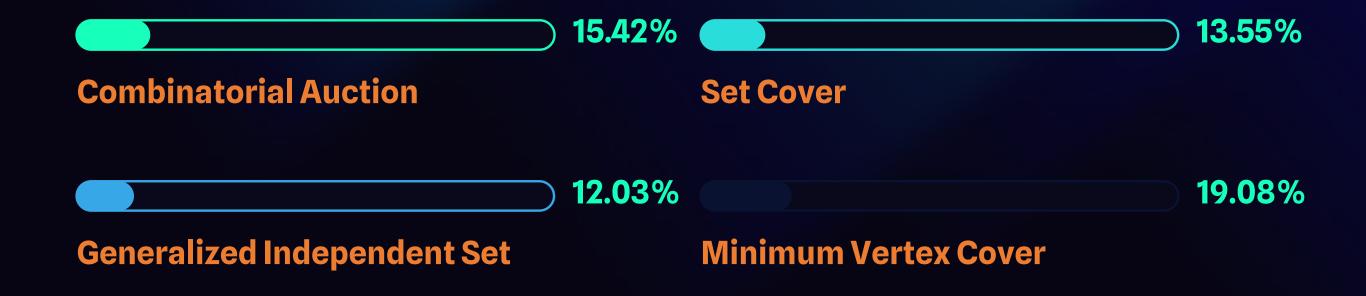
3

### Integration

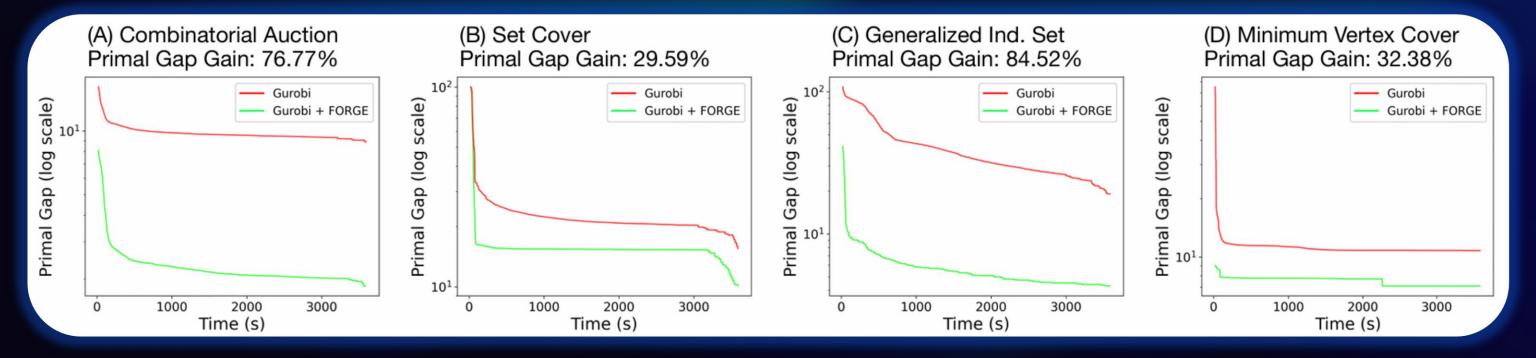
Add pseudo-cut as additional constraint to original formulation

# **Integrality Gap: Prediction Accuracy**

We measure the deviation in the **mean absolute error** between the known integrality gap and the gap predicted by Forge on very-hard test instances.



(1) **Ablation:** Training from scratch without pre-trained Forge **worsens error by ~33%** on average, highlighting the importance of unsupervised pre-training.



# Comparison with Gurobi Solver

We compare the commercial Gurobi solver on **very-hard instances** with and without our predicted pseudo-cut. Each subplot shows the primal gap (lower is better) averaged over 50 instances with 3600s time limit.

Without exception, across all problem types, the use of pseudo-cuts generated by Forge consistently results in better primal gaps. **The performance gains reach up to 85%.** 



# Take Aways from Solver Comparison

#### **Early Improvements**

The solver improves the gap early in the search, and our pseudo-cuts make these **gains immediately more pronounced**.

#### **Minimal Training Required**

Fine-tuning **only needed 50 instances** per problem type, **not even including MVC** in fine-tuning.

#### **No Optimality Dependency**

Label collection had **no dependency on optimal solutions**, making the approach practical and scalable.

#### **Consistent Performance**

Forge consistently improves solver performance across **all tested problem types and difficulty levels**.



# Comparison with State-of-the-Art ML

#### **Forge**

- Used as-is without additional training
- Tested on 17,500 previously unseen instances
- From 400 generated problem types

18.63%

Li et al. (2025)

- Trained on massive dataset
- Problem-specific training

20.14%

Forge achieves lower error rates despite being tested on entirely unseen problem types without additional training.



# Task II: Guiding the Search

The previous task evaluates the global representations at instance level.

Next task evaluates the local representations, specifically the variable embeddings for search guidance.

# The Approach

Fine-tune on a smaller dataset with a labeling strategy that does not depend on solving to optimality.

#### The Goal

Provide variable hints to the Gurobi solver to guide the search toward promising solutions.

# Training & Labeling for Search Guidance

We collect 100 instances from CA (easy, medium), SC (easy, medium, hard) and GIS (easy, medium) for a total of 700 training instances.

1

#### **Solution Pool Generation**

Each instance is solved using Gurobi to find a pool of **five feasible solutions** within five minutes. Optimality is not required for labeling.

2

## **Variable Labeling**

Variables that never appear in any solution are marked as 'negative'.

Variables that appear in a solution at least once are marked as 'positive'.

3

## **Triplet Construction**

Variables that appear in the same number of solutions are treated as 'positive' and 'anchor' pairs for triplet loss.

# **Supervised Fine-Tuning with Dual Loss**

Fine-tune using a combination of binary cross-entropy and triplet loss to learn which variable assignments

## **Cross-Entropy Loss**

We add a dense prediction head to pre-trained Forge to predict whether each variable is positive or negative.

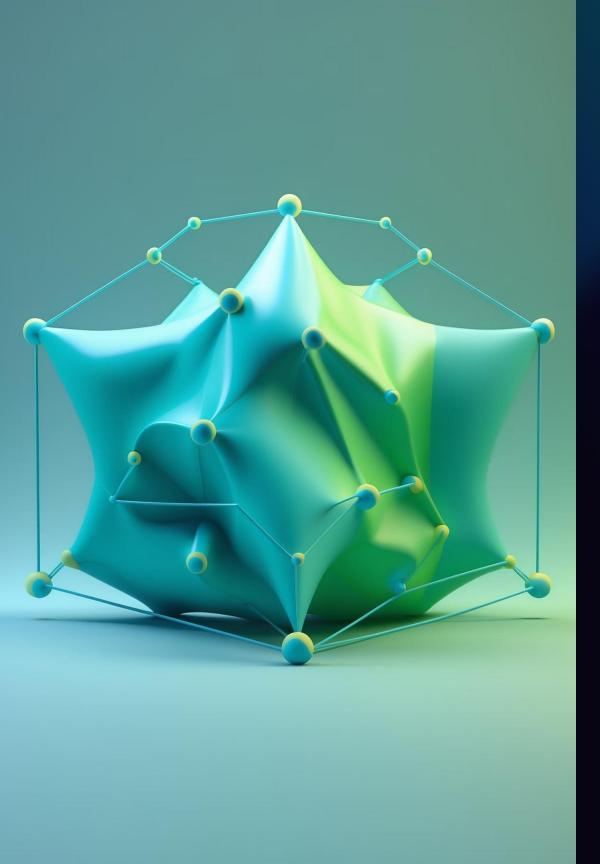
## **Triplet Loss**

Standard triplet loss where variables appearing in the same number of solutions are treated as 'positive' and 'anchor' pairs.

# **Negative Selection**

For every positive/anchor pair, we select the negative variable that is closest to the anchor in the unsupervised Forge embedding space.

Pre-trained Forge circumvent the challenge of identifying good negatives, as trivial negatives do not help learning.



# **Search Guidance: Test Setup**

We test on 50 medium instances from each of CA, SC, GIS, and MVC. Again, **MVC is unseen** in fine-tuning.

Initial Solution

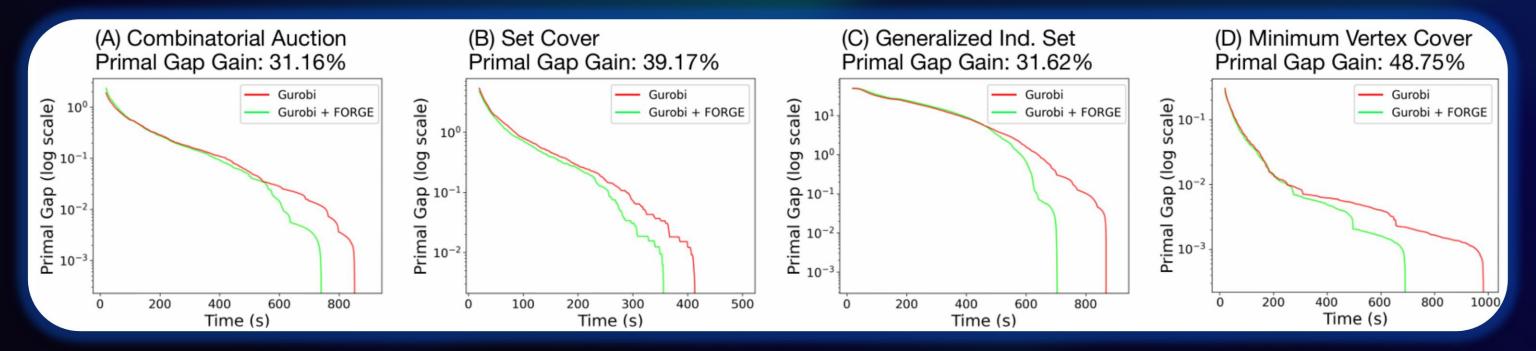
**Find feasible solution** with Gurobi within 1s variables serve **as anchors** 

**Neighbor Selection** 

**Identify neighbors** of positive/negative anchors within fixed radius in embedding space

**Hint Generation** 

**Top-decile neighbors** of positive anchors hinted for inclusion, **bottom-decile neighbors** of negative anchors for exclusion



# **Comparison with Gurobi Solver**

48%

35%

#### **Primal Gap Improvement**

Up to 48% improvement in primal gap across tested problems

### Speed-Up

Up to 35% faster convergence to optimal solutions

# Search Guidance: Augmenting SOTA ML

We test Forge's ability to augment not only MIP solvers but also other ML methods.

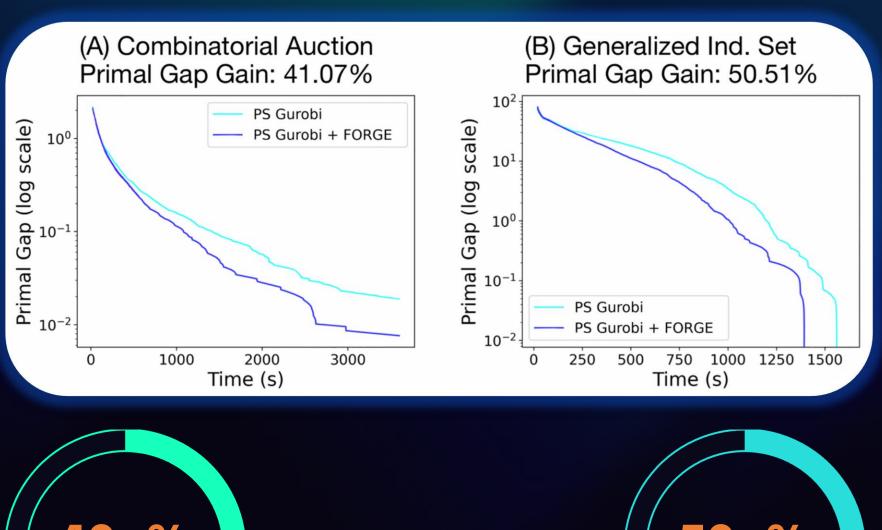
We **concatenate PS-Gurobi** (Han et al., 2023) by Forge embeddings with their variable and node embeddings.

### **Integration Method**

- Use pre-trained Forge embeddings as-is
- Apply PCA to reduce to 64 dimensions
- Concatenate with PS-Gurobi embeddings

#### **Evaluation**

Test on **common subset of problems** used in PS-Gurobi experiments: Combinatorial Auction and Generalized Independent Set





**Combinatorial Auction** 



**Generalized Independent Set** 

# Limitations



#### Scale

Forge is compact (3.25M parameters trained on ~2.8K instances). In principle, it is feasible to train on all publicly available and synthetically generated MIP instances.



## **Interpretability**

The semantics of the learned optimization vocabulary

remain unexplored.
Preliminary evidence
suggests certain codes
capture local structure like
cliques of variables.



## **Solver Integration**

Current experiments are oneshot. Extending to operate throughout the branch-andbound tree could **enable tighter integration** for further improvements.

# **Future Directions**

#### **Other Downstream Tasks**

**Leverage Forge** for warm-starts, variable selection, node selection, cut selection, solver configuration, and portfolio construction

### **Broader Generalization**

Extend **beyond optimization** to constraint satisfaction problems and from complete to incomplete search methods

# **Open-Source Release**

To enable future research and support reproducibility, we are releasing comprehensive resources to the community.



#### **Datasets**

Training datasets and benchmark collections



# **Training Pipelines**

Complete training and finetuning code



#### **Pre-trained Models**

Forge weights for immediate use



### MIP Embeddings

Ready-to-use embeddings for MIPLIB, D-MIPLIB, and strIPlib



# Forge-OS

Optimization-as-a-service for on-demand embedding generation



# A New Paradigm for Optimization

Novel unsupervised framework for learning structural representations of optimization at multiple levels, without requiring access solvers/labels

Unsu

#### **Unsupervised Learning**

Discrete vector quantization captures global structure

2

#### **Foundational Model**

Generalizes across diverse tasks, domains, and difficulty levels

3

### **Measurable Impact**

Consistently improves both solvers and ML pipelines

# Strategic Pillars of Enterprise Al @ Fidelity Al Center



#### **Al Learning from Offline Data**

Robust, scalable, reproducible features from structured, unstructured, and semi-structured datasets.

Selective, TextWiser, Seq2Pat



#### Al for Learning from Online Feedback

Adaptive, real-time, A/B testing systems that continuously learn from user interaction.

Mab2Rec, MABWiser



#### **Al for Decision Making**

Large-scale, integrated, (meta) solvers for resource management and optimization.

Forge, Balans, PathFinder



#### **AI for Automated Assistants**

Extraction and translation of natural language into downstream tasks and intents for human-computer interaction

Gala, Ner40pt, Text2Zinc, iCBS



#### **Responsible AI**

Horizontal capabilities for explainability, evaluation, fairness, and bias mitigation across all systems

Jurity, BoolXAI

Open-Source Al at Scale: Establishing an Enterprise Al Strategy [Al Magazine'25]



skadio.github.io

