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Learning & Reasoning

Data Science: ML/DL/NLP/LLMs/etc.

Focuses on machine learning using historical data 

to identify patterns and make predictions. Excels at 

pattern recognition, classification, and forecasting.

System I - Predictive Models

• Learning from historical data patterns

• Probabilistic predictions and insights

• Ideal for unstructured problems

• Applications include recommendation systems, 

image recognition, and natural language processing

Decision Science: OR/MIP/CP/SAT/LS/etc.

Focuses on combinatorial satisfaction and optimization 

using logical and mathematical models. Provides provable 

optimality and explicit reasoning.

System II - Prescriptive Models

• Mathematical and logical formulations

• Provably optimal for deterministic environments

• Perfect for structured problems

• Applications include verification, planning, 

scheduling, routing, and resource allocation



Learning & Reasoning

The Evolution of AI Paradigms: From Classical AI to Modern and Generative AI (AAAI YouTube)

https://www.youtube.com/watch?v=8SMmjBQ40YE&list=PL3kNflhPEzie9ivF8N_Z3Ac4d4Sum8iVz


Strategic Pillars of Enterprise AI @ Fidelity AI Center 

AI Learning from Offline Data

Robust, scalable, reproducible features 
from structured, unstructured, and 
semi-structured datasets.

Selective, TextWiser, Seq2Pat

AI for Learning from Online Feedback

Adaptive, real-time, A/B testing systems 
that continuously learn from user 
interaction.

Mab2Rec, MABWiser

AI for Decision Making

Large-scale, integrated, (meta) 
solvers for resource 
management and optimization.

Forge, Balans, PathFinder

AI for Automated Assistants

Extraction and translation of natural language into downstream 
tasks and intents for human-computer interaction.

Gala, Ner4Opt, Text2Zinc, iCBS

Responsible AI

Horizontal capabilities for explainability, evaluation, fairness, 
and bias mitigation across all systems.

Jurity, BoolXAI



Strategic Pillars of Enterprise AI @ Fidelity AI Center 

Open-Source AI at Scale: Establishing an Enterprise AI Strategy [AI Magazine’25] 

https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.70032
https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.70032
https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.70032
https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.70032


Mixed-Integer Programming (MIP)
MIP formulates combinatorial optimization problems with both continuous and integer variables.

LP Relaxation

Obtained by relaxing integer constraints to 
continuous.  Standard bounding procedure. 

Integrality Gap

The integrality gap measures the difference 
between LP relaxation and optimal MIP.



Existing ML-OR Integration

• Algorithm configuration procedures

• Variable and constraint selection

• Branching strategies

• Cut selection

• Node selection

• Tree-search configuration

Emerging NLP-OR Integration

• Named entity recognition for optimization

• Natural language interfaces for solvers

• Automated model formulation

• Explanation generation

• Interactive modeling assistants

• Domain-specific optimization co-pilots

Learning & Reasoning Hybrids in Optimization

Gala (NeurIPS’25), Text2Zinc (AAAI’25)
Ner4Opt (Constraints’24) , iCBS (MAKE’24)

Balans (IJCAI’25), Dash (EJOR’16)
3S (CP’’11), ISAC (ECAI’10)



Learning-Based Methods Face 
Practical Limitations

Heavy Training 
Dependency

Training is computationally 

costly and depends on 

carefully curating datasets 

with desired properties and 

distributions.

Limited 
Generalization

Adapting learning-based 

methods to new distributions 

and domains remains a 

significant challenge in the 

field.

Solver Dependency Paradox

Ironically, training depends on optimization solvers to create labeled 

datasets, defeating the purpose of improving solving for hard instances.



Vision: A Foundational Model for Optimization

Inspiration from Other 
Domains (CV, NLP) 

Foundational methods in 

text and image embeddings 

have achieved remarkable 

success through 

unsupervised learning on 

abundant data.

Key Question 
for Optimization

Can we leverage publicly 

available MIP instances to 

develop a pre-trained, general-

purpose foundational model 

for MIP representations?

Multiple Scenarios &
Applications

A single pre-trained 

foundation model that 

serves multiple optimization 

tasks across varying 

problem domains and sizes.



Vision: A Foundational Model for Optimization

                          



Vision: A Foundational Model for Optimization

Inspiration from Other 
Domains (CV, NLP) 

Foundational methods in 

text and image embeddings 

have achieved remarkable 

success through 

unsupervised learning on 

abundant data.

Key Question 
for Optimization

Can we leverage publicly 

available MIP instances to 

develop a pre-trained, general-

purpose foundational model 

for MIP representations?

Multiple Scenarios &
Applications

A single pre-trained 

foundation model that 

serves multiple optimization 

tasks across varying 

problem domains and sizes.

                          

Schloss Dagstuhl – Leibniz Center for Informatics - Seminar on Data-Driven Combinatorial Optimization (2022)

https://drops.dagstuhl.de/storage/04dagstuhl-reports/volume12/issue10/22431/DagRep.12.10.166/DagRep.12.10.166.pdf
https://drops.dagstuhl.de/storage/04dagstuhl-reports/volume12/issue10/22431/DagRep.12.10.166/DagRep.12.10.166.pdf
https://drops.dagstuhl.de/storage/04dagstuhl-reports/volume12/issue10/22431/DagRep.12.10.166/DagRep.12.10.166.pdf
https://drops.dagstuhl.de/storage/04dagstuhl-reports/volume12/issue10/22431/DagRep.12.10.166/DagRep.12.10.166.pdf
https://drops.dagstuhl.de/storage/04dagstuhl-reports/volume12/issue10/22431/DagRep.12.10.166/DagRep.12.10.166.pdf
https://drops.dagstuhl.de/storage/04dagstuhl-reports/volume12/issue10/22431/DagRep.12.10.166/DagRep.12.10.166.pdf
https://drops.dagstuhl.de/storage/04dagstuhl-reports/volume12/issue10/22431/DagRep.12.10.166/DagRep.12.10.166.pdf
https://drops.dagstuhl.de/storage/04dagstuhl-reports/volume12/issue10/22431/DagRep.12.10.166/DagRep.12.10.166.pdf


The Growing Success of ML-Based Approaches

1Meta-Learning Frameworks

Zhou et al. (2023) propose methods that 
generalize across vehicle routing 

problem variants of different sizes but 
remain limited to routing.

2 Multi-Task Approaches

Cai et al. (2025a) introduce frameworks 
for backdoor prediction and solver 
configuration, trained for each problem.

3LLM-Based Methods

Li et al. (2025) use evolutionary 
frameworks to generate diverse MIP 

problems but require supervision and 
many pre-solved instances.



The Gap: No General-Purpose Optimization 
Embeddings Exist Today

Problem-Specific

Generalize across tasks but 

confined to one problem 

domain (e.g., vehicle routing).

Task-Specific

Scale across problem sizes 

and variants but limited to 

one optimization task.

Supervised

Rely on pre-solved 

instances and costly data 

labeling, hindering real-world 

adaptability.



Generate MIP embeddings through pre-training to learn structural representations at the instance level 
in an unsupervised manner, using a broad distribution of MIP instances without access to their solutions.

From Natural Language Processing

We adopt the concept of a vocabulary to represent the latent space of optimization problems
enabling instance-level representations.

From Computer Vision

We leverage vector quantization to preserve global information, addressing the limitations 
of GNN-based approaches in prior work.

Forge: Foundational Model for MIP Embeddings



Foundational Model
Forge captures both local and 
global structures. A single 
pre-trained model provides 
embeddings at multiple levels: 
instance, variable, constraint.

Unsupervised Generalization
Forge embeddings cluster previously 
unseen instances across diverse 
problem types with high accuracy 
without any supervision.

Supervised Adaptability
Pre-trained embeddings can 
be fine-tuned on diverse 
downstream tasks using 
minimal additional data and 
low-cost labeling strategies.

Solver Integration
Forge predictions integrate into Gurobi 
demonstrating consistently lower primal gap 
across tasks, domains, and sizes.

ML Augmentation
Evaluate against state-of-the-art methods, 
improving their performance on large sets of 
instances they were trained on, yet unseen by Forge.

Our Contributions
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1 High-Level Idea 
Forge uses a vector quantized graph autoencoder to reconstruct node features and edges. It is pretrained 
across diverse problems and sizes to learn generic MIP representations without dependency on optimal solutions.

2 Architecture

The architecture combines bipartite graph, GNN embeddings, vector quantization with a codebook, 

and reconstruction objectives to learn structural patterns in an unsupervised manner.



A) MIP-to-Bipartite Representation
Given a MIP instance, we start with its bipartite representation (Gasse et. 
al. 2019) and node features. Each node represents a constraint or variable, 
with edges indicating which variables are part of which constraints.

Node Features Forge uses only basic properties of the input instance.

• Constraint nodes: 4 features (sense: <,=,> and RHS value)

• Variable nodes: 6 features (type: bin, int, cont, ub/lb, objective coeff)

• Total: 10-dimensional vector per node

Key Advantage: No dependency on solving the instance or 
accessing internal solver information.



B) Bipartite to GNN Embeddings
The bipartite graph with 10-dimensional input features is passed into a 
Graph Neural Network to generate embeddings for each constraint and 
variable node.

GraphSage Layers

Forge uses two GraphSage layers that project each input node into 
a d-dimensional embedding space.

The Locality Challenge

GNNs capture local variable and constraint-level information, 
struggle with global information due to inherent locality bias 
(Feng et. al. 2025).



C) Vector Quantized Codebook

To preserve global structure, we introduce a vector quantized codebook 

with k discrete codes. These codes act as a 'vocabulary', akin to language 

models, across MIP instances of various domains and difficulties.

Inspiration from 
Computer Vision

The design follows approaches 

developed in computer vision and 

structure-aware graph tokenizer 

extensions (Yang et. al. 2024)

Preserving 
Global Structure

By utilizing discrete codes, Forge 

circumvents the over-smoothing 

issue and captures the global 

structure of MIP instances.



D) GNN-to-Codeword Mapping
GNN embeddings are passed into a vector quantizer which consists of 

a codebook with k codes. The codebook maps each node to a discrete code.

Code Assignment

Each node in the bipartite 

graph is assigned a discrete 

code from the codebook.

Codeword Mapping

Each code in the codebook 

is then mapped into a d-

dimensional codeword, 

producing codeword 

representations for 

constraints and 

variables.

Alignment

The codewords are aligned 

with the dimensionality of 

the hidden GNN layers.



E) Codeword-to-Bipartite Reconstruction

Codewords corresponding to each constraint and variable node are used to 
reconstruct the original bipartite representation of the MIP instance.

Reconstruction Process

Codewords are passed into

 linear decoders to reconstruct:

• Node feature decoder

• Edge structure decoder

Unsupervised Learning

By reconstructing the input, 

Forge learns from the structure 

of MIP instances without 

requiring labels or solutions.





F) Loss Function

The loss function minimizes edge reconstruction loss, node feature reconstruction loss, and losses 

related to vector quantization.

Reconstruction Loss

Measures how well the 

model reconstructs the 

original bipartite graph 

structure and node features.

Codebook Loss

Moves codewords closer to 

node embeddings, similar to 

k-means clustering.

Commitment Loss

Encourages node 

embeddings to commit to 

their assigned codewords.



Components of the 
Loss Function
The loss function components work together to learn meaningful 
representations through reconstruction and vector quantization.

1 Codebook Loss Intuition
Can be interpreted as k-means clustering, where codewords 
(cluster centroids) move closer to node embeddings while 
embeddings are fixed via stop-gradient.

2 Commitment Loss Intuition
Fixes codewords using stop-gradient and moves 
embeddings towards codewords instead.

3 Balancing Act
The hyperparameter α weighs the importance of the 
commitment loss, balancing the two objectives.



What does Forge Produce? 

Local Representations

Each constraint and variable 
node is assigned a discrete 
code mapped to a codeword, 
providing fine-grained 
embeddings.

Global Representations

Instance-level embeddings 
are created from the 
distribution of codes across 
all nodes in the MIP instance.

Embedding Structure

Each instance is represented 
by a vector of size |codebook|, 
where each value indicates 
the frequency of the 
corresponding code.
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Initial Analysis: Clustering 
Unseen Instances

We evaluate Forge embeddings on clustering unseen instances across 
various problem domains, comparing against two baseline approaches.

1 Training

MIPLIB instances and its relaxation

2 Testing

D-MIPLIB instances across 21 domain-difficulty pairs

3 Evaluation

Quantitative (NMI score) and qualitative (visualization) analysis



Training Configuration

Training Data

600 instances from MIPLIB, 

sorted by size to ensure 

bipartite graphs fit on GPU 

memory. Generated two 

additional instances per 

MIPLIB instance by randomly 

dropping 5% and 10% of 

constraints.

Total: 1,800 MIP instances

Model Architecture

Two GraphSage layers with 

d=1024 dimensions and a 

codebook with k=5000 

codes (vocabulary size).

Data Augmentation

Dropping constraints only 

relaxes the problem, 

providing valid augmented 

training instances without 

changing the fundamental 

structure.



Test Dataset: D-MIPLIB
We evaluate on 1,050 instances from D-MIPLIB (Weimin et. al. 2024) categorized into 

21 domain-difficulty pairs, covering a broad spectrum of problem types and complexity levels.

Set Cover

Easy, medium, hard

Independent Set

MIS easy, medium; 

GIS easy to ext-hard

Vertex Cover

MVC easy, medium, hard

Combinatorial Auction

Very-easy to very-hard2

Other Problems

Item Placement, Maritime 

Inventory Routing



Baseline Comparisons

1
Mean Readout

Averages all GNN node embeddings within the trained 
Forge model. Ablation without vector quantization.

2
Label Propagation

Two-hop label propagation on the 10-dimensional static 
node features and averages the resulting node vectors.

3
Forge Embeddings

Uses the distribution of discrete codes assigned to 
constraints and variables as instance-level embeddings.



0.087
Mean Readout

Only slightly better than random 
(0.047). Suffers from over-

smoothing when averaging dense 
GNN embeddings.

0.790
Label Propagation

Better performance operating 
directly on sparse input features, 

avoiding over-smoothing.

0.843
Forge Embeddings

Best performance by utilizing 
distribution of discrete codes, 
circumventing over-smoothing 
and capturing global structure.



❑ We repeat the experiment using our MIPLIB-pretrained Forge to cluster strIPlib instances. 

❑ We select 50 instances from each of 10 previously unseen problem types.

❑ Forge cleanly clusters different problems despite never seeing these instances. 

❑ Interesting patterns: Train Timetabling and Map Labeling appearing close to each other, potential TL opportunities.



Set Cover Problem

Find smallest number of subsets that cover all 

elements. A covering problem with ≥ 

constraints.

Vertex Cover Problem

Find smallest set of vertices such that every 

edge has at least one endpoint. Also, a 

covering problem.

Bin Packing Problem

Find smallest number of bins that pack all 

items within capacity. A packing problem with 

≤ constraints.

Independent Set Problem

Find largest set of vertices with no adjacent 

nodes. Also, a packing problem, 

complementary to Vertex Cover.



Vector Arithmetic in 
Latent Optimization Space

Experimental Setup

• Fixed graph size: 1,000 vertices

• 50 random instances per 

problem

• Controlled difficulty: solvable 

within 60s

Methodology

Compute mean embeddings for 

each problem type, calculate 

difference vector between covering 

and packing, apply transformation to 

Vertex Cover instances.



Updated Vertex Cover instances (shown in black) move closer to Independent Set instances after applying the 

transformation. This validates that meaningful semantic directions exist in the optimization embedding space.
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Supervised Experiments

We now shift to supervised evaluations to demonstrate Forge's utility in improving MIP solving across 

fundamentally different downstream tasks.

Task Selection Criteria

Tasks must provide utility for MIP 

solving, enable fair comparison, 

be radically different from each 

other, and be solver-agnostic

Same Pre-trained Model

We use the same pre-trained 

Forge model for all tasks, 

problems, sizes, validating 

general applicability 

Task I: Integrality Gap Prediction

Used to generate a pseudo-cut added to the 

original problem formulation to tighten its bound 

at the beginning of the search.

Task II: Variable Guidance

Used to provide hints to the solver during search 

about which variables are likely to be in the 

solution.



Fine-Tuning Philosophy 

The same pre-trained model then fine-tuned on a 

small and cheaply labeled data to learn prediction 

heads for completely different tasks.

NLP Analogy

Fine-tune prediction heads for entity extraction in a 

specific domain (e.g., finance) using a small set of 

labels. Revive the success of foundational models



Training the Foundational Forge Model

Expanded Dataset

• 1,800 MIPLIB instances

• 1,050 D-MIPLIB instances

• Total: 2,850 MIP instances

Model Specifications

• 3.25 million parameters

• Two GraphSage layers

• d = 1,024 dimensions

• k = 5,000 codebook size



Task I: Predicting the Integrality Gap
There is no magic constant that one could always use heuristically, wide distribution %5-95% 
Makes integrality gap prediction a deliberate learning task.

Challenge

Predict gap without solving to optimality

Application

Generate pseudo-cut as additional constrain

Risk  & Benefit

Incorrect prediction may over/underestimate objective

Pseudo-cuts can speed up solving by tightening bounds



Integrality Gap: Training Setup

We train on 450 instances from CA, SC, and GIS problems with varying difficulty levels. 

This is considerably smaller than the pre-training dataset (2850 instances)

Training Data

• CA: very-easy, easy, medium

• SCP: easy, medium, hard

• GISP: easy, medium, hard

• 50 instances per category

Label Collection

Each instance solved with Gurobi using 120s. 

Label is the ratio between integer solution at 

timeout and LP relaxation. Conservative label 

strategy  does not require solving to optimality. 



1 Prediction Head

2 Training Objective

Regression task trained with mean error loss in an end-to-end manner

3 Minimal Data

Only 450 labeled instances needed, with cheap labeling strategy that doesn't require optimality

Fine-Tuning

Dense layer added to pre-trained Forge model, 

takes codewords as input and outputs a real number using mean readout



Evaluate on 50 very-hard instances each of CA, SC, GIS, and MVC. 

Fine-tuning did not include 'very hard' category, and MVC is entirely unseen.

1

Prediction

Forge predicts integrality 

gap for each test instance

2

Pseudo-Cut Generation

Adjust initial LP relaxation 

objective based on 

prediction

3

Integration

Add pseudo-cut as 

additional constraint to 

original formulation

Integrality Gap: Test Setup



Integrality Gap: Prediction Accuracy

We measure the deviation in the mean absolute error between the known integrality gap and the gap 
predicted by Forge on very-hard test instances.

15.42%

Combinatorial Auction

13.55%

Set Cover

12.03%

Generalized Independent Set

19.08%

Minimum Vertex Cover

Ablation: Training from scratch without pre-trained Forge worsens error by ~33% 
on average, highlighting the importance of unsupervised pre-training.



Comparison with Gurobi Solver

We compare the commercial Gurobi solver on very-hard instances with and without our predicted pseudo-cut. 

Each subplot shows the primal gap (lower is better) averaged over 50 instances with 3600s time limit.

Without exception, across all problem types, the use of pseudo-cuts generated by Forge consistently 

results in better primal gaps. The performance gains reach up to 85%.



Take Aways from Solver Comparison

Early Improvements

The solver improves the gap early in the search, and our 

pseudo-cuts make these gains immediately more 

pronounced.

Minimal Training Required

Fine-tuning only needed 50 instances per problem type, 

not even including MVC in fine-tuning.

No Optimality Dependency

Label collection had no dependency on optimal solutions, 

making the approach practical and scalable.

Consistent Performance

Forge consistently improves solver performance across all 

tested problem types and difficulty levels.



Comparison with State-of-the-Art ML

18.63% 20.14%
Forge achieves lower error rates despite being tested on entirely unseen problem types without additional training.

Forge

• Used as-is without additional training

• Tested on 17,500 previously unseen instances

• From 400 generated problem types

Li et al. (2025)

• Trained on massive dataset

• Problem-specific training



Task II: Guiding the Search

The previous task evaluates the global representations at instance level. 

Next task evaluates the local representations, specifically the variable 

embeddings for search guidance.

The Approach

Fine-tune on a smaller dataset 

with a labeling strategy that 

does not depend on solving to 

optimality.

The Goal

Provide variable hints to the 

Gurobi solver to guide the 

search toward promising 

solutions.



Training & Labeling for Search Guidance

We collect 100 instances from CA (easy, medium), SC (easy, medium, hard) and GIS (easy, medium) 

for a total of 700 training instances.

1

Solution Pool Generation

Each instance is solved using 

Gurobi to find a pool of five 

feasible solutions within five 

minutes. Optimality is not 

required for labeling.

2

Variable Labeling

Variables that never appear in any 

solution are marked as 'negative'. 

Variables that appear in a 

solution at least once are marked 

as 'positive'.

3

Triplet Construction

Variables that appear in the same 

number of solutions are treated 

as 'positive' and 'anchor' pairs for 

triplet loss.



Supervised Fine-Tuning with Dual Loss

Fine-tune using a combination of binary cross-entropy and triplet loss to learn which variable assignments

Cross-Entropy Loss

We add a dense prediction 

head to pre-trained Forge 

to predict whether each 

variable is positive or 

negative.

Triplet  Loss

Standard triplet loss where 

variables appearing in the 

same number of solutions 

are treated as 'positive' and 

'anchor' pairs.

Negative Selection

For every positive/anchor 

pair, we select the negative 

variable that is closest to 

the anchor in the 

unsupervised Forge 

embedding space.

Pre-trained Forge circumvent the challenge of identifying good negatives, as trivial negatives do not help 

learning.



Search Guidance: Test Setup
We test on 50 medium instances from each of CA, SC, GIS, and MVC. 
Again, MVC is unseen in fine-tuning.

1
Initial Solution

Find feasible solution with Gurobi within 1s 
variables serve as anchors

2
Neighbor Selection

Identify neighbors of positive/negative anchors within fixed 
radius in embedding space

3
Hint Generation

Top-decile neighbors of positive anchors hinted for inclusion, 
bottom-decile neighbors of negative anchors for exclusion



Comparison with Gurobi Solver

48%
Primal Gap Improvement

Up to 48% improvement in primal 

gap across tested problems

35%
Speed-Up

Up to 35% faster convergence to 

optimal solutions



Search Guidance: Augmenting SOTA ML

We test Forge's ability to augment not only MIP solvers but also other ML methods. 

We concatenate PS-Gurobi (Han et al., 2023) by Forge embeddings with their variable and node embeddings.

Integration Method

• Use pre-trained Forge embeddings as-is

• Apply PCA to reduce to 64 dimensions

• Concatenate with PS-Gurobi embeddings

Evaluation

Test on common subset of problems used in 

PS-Gurobi experiments: Combinatorial Auction 

and Generalized Independent Set



40+%

Combinatorial 
Auction

50+%

Generalized 
Independent Set



Limitations

Scale

Forge is compact (3.25M 
parameters trained on ~2.8K 
instances). In principle, it is 
feasible to train on all publicly 
available and synthetically 
generated MIP instances.

Interpretability

The semantics of the learned 
optimization vocabulary 
remain unexplored. 
Preliminary evidence 
suggests certain codes 
capture local structure like 
cliques of variables.

Solver Integration

Current experiments are one-
shot. Extending to operate 
throughout the branch-and-
bound tree could enable tighter 
integration for further 
improvements.



Future Directions

Other Downstream Tasks

Leverage Forge for warm-starts, variable 

selection, node selection, cut selection, solver 

configuration, and portfolio construction

Broader Generalization

Extend beyond optimization to constraint 

satisfaction problems and from complete to 

incomplete search methods



Open-Source Release
To enable future research and support reproducibility, we are releasing comprehensive resources to the community.

Datasets

Training datasets and 
benchmark collections

Training Pipelines

Complete training and fine-
tuning code

Pre-trained Models

Forge weights for 
immediate use

MIP Embeddings

Ready-to-use embeddings for MIPLIB, 
D-MIPLIB, and strIPlib

Forge-OS

Optimization-as-a-service for on-demand 
embedding generation



A New Paradigm for Optimization

Novel unsupervised framework for learning structural representations of 

optimization at multiple levels, without requiring access solvers/labels

Unsupervised Learning

Discrete vector quantization captures global structure

Foundational Model

Generalizes across diverse tasks, domains, and difficulty levels

Measurable Impact

Consistently improves both solvers and ML pipelines



Strategic Pillars of Enterprise AI @ Fidelity AI Center 

AI Learning from Offline Data

Robust, scalable, reproducible features 
from structured, unstructured, and 
semi-structured datasets.

Selective, TextWiser, Seq2Pat

AI for Learning from Online Feedback

Adaptive, real-time, A/B testing systems 
that continuously learn from user 
interaction.

Mab2Rec, MABWiser

AI for Decision Making

Large-scale, integrated, (meta) 
solvers for resource 
management and optimization.

Forge, Balans, PathFinder

AI for Automated Assistants

Extraction and translation of natural language into downstream 
tasks and intents for human-computer interaction

Gala, Ner4Opt, Text2Zinc, iCBS

Responsible AI

Horizontal capabilities for explainability, evaluation, fairness, 
and bias mitigation across all systems

Jurity, BoolXAI

Open-Source AI at Scale: Establishing an Enterprise AI Strategy [AI Magazine’25] 
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