USC

Forge: Foundational Optimization
Representations from Graph Embeddings

University of Southern California, USC ORAI Research Seminar, 2025

Serdar Kadioglu

'Dept. of Computer Science, Brown University E‘\’E

2 Al Center of Excellence, Fidelity Investments ol
- skadio.github.io BROWN

https://skadio.github.io/

Learning & Reasoning

Data Science: ML/DL/NLP/LLMs/etc.

Focuses on machine learning using historical data
to identify patterns and make predictions. Excels at
pattern recognition, classification, and forecasting.

System | - Predictive Models

- Learning from historical data patterns
- Probabilistic predictions and insights
« |deal forunstructured problems

« Applicationsinclude recommendation systems,
image recognition, and natural language processing

Decision Science: OR/MIP/CP/SAT/LS/etc.

Focuses on combinatorial satisfaction and optimization
using logical and mathematical models. Provides provable
optimality and explicit reasoning.

System Il - Prescriptive Models

« Mathematical and logical formulations
« Provably optimal for deterministic environments
« Perfect for structured problems

« Applications include verification, planning,
scheduling, routing, and resource allocation

Learning & Reasoning

Evolution of Al Paradigms

Classical Al Modern Al Generative Al

expert systems (1950 — 2010) supervised learning (2010 — 2020) self-supervision (2020+)

If-Then Rules Deep Learning Large Language Models

Significant increase in investment, research, accessibility & visibility over the recent years I

The Evolution of Al Paradigms: From Classical Al to Modern and Generative Al (AAAI YouTube)

https://www.youtube.com/watch?v=8SMmjBQ40YE&list=PL3kNflhPEzie9ivF8N_Z3Ac4d4Sum8iVz

Strategic Pillars of Enterprise Al @ Fidelity Al Center

Extraction and translation of natural language into downstream
tasks and intents for human-computer interaction.

4 N N\)
@ Al Learning from Offline Data @ Al for Learning from Online Feedback Al for Decision Making
Robust, scalable, reproducible features Adaptive, real-time, A/B testing systems Large-scale, integrated, (meta)
from structured, unstructured, and that continuously learn from user solvers for resource
semi-structured datasets. interaction. management and optimization.

Selective, TextWiser, Seq2Pat Mab2Rec, MABWiser Forge, Balans, PathFinder
N AN AN J
4 N [)
¢ Alfor Automated Assistants @ Responsible Al

Gala, Ner40pt, Text2Zinc, iCBS

- J

Horizontal capabilities for explainability, evaluation, fairness,
and bias mitigation across all systems.

Jurity, BoolXAl

g 9

Strategic Pillars of Enterprise Al @ Fidelity Al Center

Received: 26 July 2025 Revised: 27 August 2025 Accepted: 2 September 2025

DOI: 10.1002/aaai.70032

SPECIAL TOPIC ARTICLE

Open-source Al at scale: Establishing an enterprise Al
strategy through modular frameworks

Serdar Kadioglu'?

LAl Center of Excellence, Fidelity

Investments, Boston, Massachusetts, USA Abstract

2Department of Computer Science, Brown We present a comprehensive enterprise Al strategy developed within the Al

University, Providence, Rhode Island, Center of Excellence at Fidelity Investments, emphasizing the strategic inte-

o gration of open-source Al frameworks into scalable, modular, and reproducible

Correspondence enterprise-grade solutions. Our approach is structured around five key pillars:

IS:;d:lr }“‘(dm\l” A— learning from offline data, learning from online feedback, intelligent decision-

SR S making, automated assistants, and responsible Al practices. Through a suite of
12 open-source libraries, we demonstrate how modular and interoperable tools
can collectively enhance scalability, fairness, and explainability in real-world
Al deployments. We further illustrate the impact of this strategy through three
enterprise case studies. Finally, we distill a set of best deployment practices to

guide organizations in implementing modular, open-source Al strategies at scale.

Open-Source Al at Scale: Establishing an Enterprise Al Strategy [Al Magazine'25]

https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.70032
https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.70032
https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.70032
https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.70032

Mixed-Integer Programming (MIP)

MIP formulates combinatorial optimization problems with both continuous and integer variables.

f)= minc’x | Ax<b,xER",x;, EZVjEI

LP Relaxation Integrality Gap

Obtained by relaxing integer constraints to The integrality gap measures the difference
continuous. Standard bounding procedure. between LP relaxation and optimal MIP.

Learning & Reasoning Hybrids in Optimization

Existing ML-OR Integration

« Algorithm configuration procedures
- Variable and constraint selection

- Branching strategies

« Cut selection

« Node selection

« Tree-search configuration

Balans (IJCAI'25), Dash (EJOR’16)
3S(CP"11), ISAC (ECAI'10)

Emerging NLP-OR Integration

« Named entity recognition for optimization
- Natural language interfaces for solvers

« Automated model formulation

- Explanation generation

« Interactive modeling assistants

« Domain-specific optimization co-pilots

Gala(NeurlPS’25), Text2Zinc (AAAI'25)
Ner40pt (Constraints’24),iCBS (MAKE'24)

Learning-Based Methods Face
Practical Limitations

Heavy Training Limited

Dependency Generalization

Training is computationally Adapting learning-based

costly and depends on methods to new distributions

carefully curating datasets and domains remains a

with desired properties and significant challenge in the
\distributions. y \field.)
u N

_

Solver Dependency Paradox

Ironically, training depends on optimization solvers to create labeled
datasets, defeating the purpose of improving solving for hard instances

J

Vision: A Foundational Model for Optimization

©

Inspiration from Other
Domains (CV, NLP)

~

Foundational methods in
text and image embeddings
have achieved remarkable
success through
unsupervised learning on

\abundant data.

%

-

Key Question
for Optimization

~

Can we leverage publicly
available MIP instances to
develop a pre-trained, general-
purpose foundational model
for MIP representations?

_ J

4)

Op

Multiple Scenarios &
Applications

A single pre-trained
foundation model that
serves multiple optimization
tasks across varying
problem domains and sizes.

_ J

Vision: A Foundational Model for Optimization

KING — MAN + WOMAN = QUEEN COUNTRY - CAPITAL

Spain
Italy Madrid

Germany —_— Rome

Berlin

Tu rkey \
Ankara

Russia ————— oSCcow
Canada -——— Ottawa

J
apan \ TOkYO

Vietman

Hanoi
China —— Beijing

Vision: A Foundational Model for Optimization

%%

Schloss Dagstuhl - Leibniz Center for Informatics - Seminar on Data-Driven Combinatorial Optimization (2022)

https://drops.dagstuhl.de/storage/04dagstuhl-reports/volume12/issue10/22431/DagRep.12.10.166/DagRep.12.10.166.pdf
https://drops.dagstuhl.de/storage/04dagstuhl-reports/volume12/issue10/22431/DagRep.12.10.166/DagRep.12.10.166.pdf
https://drops.dagstuhl.de/storage/04dagstuhl-reports/volume12/issue10/22431/DagRep.12.10.166/DagRep.12.10.166.pdf
https://drops.dagstuhl.de/storage/04dagstuhl-reports/volume12/issue10/22431/DagRep.12.10.166/DagRep.12.10.166.pdf
https://drops.dagstuhl.de/storage/04dagstuhl-reports/volume12/issue10/22431/DagRep.12.10.166/DagRep.12.10.166.pdf
https://drops.dagstuhl.de/storage/04dagstuhl-reports/volume12/issue10/22431/DagRep.12.10.166/DagRep.12.10.166.pdf
https://drops.dagstuhl.de/storage/04dagstuhl-reports/volume12/issue10/22431/DagRep.12.10.166/DagRep.12.10.166.pdf
https://drops.dagstuhl.de/storage/04dagstuhl-reports/volume12/issue10/22431/DagRep.12.10.166/DagRep.12.10.166.pdf

The Growing Success of ML-Based Approaches

Meta-Learning Frameworks

Zhou et al.(2023) propose methods that
generalize across vehicle routing

problem variants of different sizes but @_ Multi-Task Approaches

remain limited to routing.
Cai et al.(2025a) introduce frameworks

for backdoor prediction and solver

configuration, trained for each problem.
LLM-Based Methods

Li et al.(2025) use evolutionary
frameworks to generate diverse MIP
problems but require supervision and
many pre-solved instances.

The Gap: No General-Purpose Optimization
Embeddings Exist Today

Problem-Specific

Generalize across tasks but
confined to one problem
domain(e.qg., vehicle routing).

Task-Specific

Scale across problem sizes
and variants but limited to
one optimization task.

Supervised

Rely on pre-solved
instances and costly data
labeling, hindering real-world
adaptability.

Forge: Foundational Model for MIP Embeddings

Generate MIP embeddings through pre-training to learn structural representations at the instance level
in an unsupervised manner, using a broad distribution of MIP instances without access to their solutions.

\/

AZ

From Natural Language Processing

We adopt the concept of a vocabulary to represent the latent space of optimization problems
S~ enabling instance-level representations.

From Computer Vision

We leverage vector quantization to preserve global information, addressing the limitations
~ of GNN-based approachesin prior work.

Our Contributions

@

Foundational Model Unsupervised Generalization Supervised Adaptability

Forge captures both local and Forge embeddings cluster previously Pre-trained embeddings can

global structures. A single unseen instances across diverse be fine-tuned on diverse

pre-trained model provides problem types with high accuracy downstream tasks using

embeddings at multiple levels: without any supervision. minimal additional data and

instance, variable, constraint. low-cost labeling strategies.
¢ &

Solver Integration ML Augmentation

Forge predictions integrate into Gurobi Evaluate against state-of-the-art methods,

demonstrating consistently lower primal gap improving their performance on large sets of

across tasks, domains, and sizes. instances they were trained on, yet unseen by Forge.

Our Contributions

@

Foundational Model Unsupervised Generalization = Supervised Adaptability

Forge captures both local and Forge embeddings cluster previously Pre-trained embeddings can

global structures. A single unseen instances across diverse be fine-tuned on diverse

pre-trained model provides problem types with high accuracy downstream tasks using

embeddings at multiple levels: without any supervision. minimal additional data and

instance, variable, constraint. low-cost labeling strategies.
2i)

Solver Integration ML Augmentation

Forge predictions integrate into Gurobi Evaluate against state-of-the-art methods,

demonstrating consistently lower primal gap improving their performance on large sets of

across tasks, domains, and sizes. instances they were trained on, yet unseen by Forge.

(::) : = +3C0d(’l7()0/\'
Edge ‘::‘ 2 ‘ngnmirmcnt
» .."".

Decoder

Vector Quantizer

Input Bipartite GNN Using Two Hidden Layer Vector Code Word Decoder Layers Reconstructed Loss Function
Representation of GraphSAGE Representation Quantization Representation Instance
a MIP Instance Layers (RY (k codes) (R

®7 High-Level Idea

Forge uses a vector quantized graph autoencoder to reconstruct node features and edges. It is pretrained
across diverse problems and sizes to learn generic MIP representations without dependency on optimal solutions.

@7 Architecture

The architecture combines bipartite graph, GNN embeddings, vector quantization with a codebook,
and reconstruction objectives to learn structural patternsin an unsupervised manner.

A) MIP-to-Bipartite Representation

Given a MIP instance, we start with its bipartite representation (Gasse et.
al. 2019) and node features. Each node represents a constraint or variable,
with edges indicating which variables are part of which constraints.

Node Features Forge uses only basic properties of the input instance.

- Constraint nodes: 4 features(sense: <,=,>and RHS value)
- Variable nodes: 6 features(type: bin, int, cont, ub/Ib, objective coeff)

« Total: 10-dimensional vector per node

Key Advantage: No dependency on solving the instance or

accessing internal solver information.
Input Bipartite

Representation of
a MIP Instance

B) Bipartite to GNN Embeddings

The bipartite graph with 10-dimensional input features is passed into a
Graph Neural Network to generate embeddings for each constraint and
variable node.

GNN Embedding for ¢,

GNN Embedding for ¢,

GraphSage Layers
Forge uses two GraphSage layers that project each input node into
a d-dimensional embedding space. Graph GNN Embedding for ¢,
Neural I GNN Embedding for v,
Network :
h GNN Embedding for v,

The Locality Challenge

GNNs capture local variable and constraint-level information,
struggle with global information due to inherent locality bias GNN Embedding for v,
(Feng et. al. 2025).

C) Vector Quantized Codebook

To preserve global structure, we introduce a vector quantized codebook
with k discrete codes. These codes act as a 'vocabulary', akin to language
models, across MIP instances of various domains and difficulties.

@

Inspiration from Preserving

Computer Vision Global Structure

The design follows approaches By utilizing discrete codes, Forge
developed in computer vision and circumvents the over-smoothing
structure-aware graph tokenizer issue and captures the global
extensions(Yang et. al. 2024) structure of MIP instances.

[]
[]
Code-word for ¢,

Code-word for v,

Vector Quantizer

Vector Code Word
Quantization Representation

k codes R4

D) GNN-to-Codeword Mapping

GNN embeddings are passed into a vector quantizer which consists of

a codebook with k codes. The codebook maps each node to a discrete code.

Code Assignment

Each node in the bipartite
graph is assigned a discrete
code from the codebook.

Alignment

The codewords are aligned
with the dimensionality of
the hidden GNN layers.

Codeword Mapping

Each code in the codebook
Is then mapped into a d-
dimensional codeword,
producing codeword
representations for
constraints and

variables.

Vector Quantizer

Vector
LJuantization

k codes

Code Word
Representation

Rd

E) Codeword-to-Bipartite Reconstruction

Codewords corresponding to each constraint and variable node are used to
reconstruct the original bipartite representation of the MIP instance.

Reconstruction Process Unsupervised Learning Decoder
Codewords are passed into By reconstructing the input,
linear decoders to reconstruct: Forge learns from the structure Edge
: . -
of MIP instances without Decoder

- Node feature decoder .. i
requiring labels or solutions.

- [Edge structure decoder

Decoder Layers Reconstructed
Instance

Node
Feature

Decoder | P = gR
ec

@ > +°CZC()(1

ebook

‘3 Commitment

Decoder

Vector Quantizer

Input Bipartite GNN Using Two Hidden Layer Vector Code Word Decoder Layers Reconstructed Loss Function
Representation of GraphSAGE Representation Quantization Representation Instance
a MIP Instance Layers (RY (k codes) (R

F) Loss Function

The loss function minimizes edge reconstruction loss, node feature reconstruction loss, and losses

related to vector quantization.

L = Lgec ¥ Lcodebook™ Lcommitment

~

Reconstruction Loss Codebook Loss Commitment Loss
Measures how well the Moves codewords closer to Encourages node

model reconstructs the node embeddings, similar to embeddings to commit to
original bipartite graph k-means clustering. their assigned codewords.
structure and node features.

_ NS J

Components of the
Loss Function

The loss function components work together to learn meaningful
representations through reconstruction and vector quantization.

®7 Codebook Loss Intuition

Can be interpreted as k-means clustering, where codewords
(cluster centroids) move closer to node embeddings while
embeddings are fixed via stop-gradient.

@7 Commitment Loss Intuition

Fixes codewords using stop-gradient and moves
embeddings towards codewords instead.

@7 Balancing Act

The hyperparameter a weighs the importance of the
commitment loss, balancing the two objectives.

—
0
S
w

N

0O O 0
o} o}
Q Q
® ®
B w w

Frequency

@O

O — U 5 .l _— 4
Code1 Code2 Code3 Code4 Code5

o
®
®
©
o

oK
i

MIPEmbedding: 3 2 3 2 0

What does Forge Produce?

4

) Embedding Structure
Global Representations

. Each instance is represented
Local Representations ’

Instance-level embeddings by a vector of size [codebook,
Each constraint and variable are created from the where each value indicates
node is assigned a discrete distribution of codes across the frequency of the
code mapped to a codeword, all nodes in the MIP instance. corresponding code.

providing fine-grained
embeddings.

Our Contributions

@

Foundational Model Unsupervised Generalization Supervised Adaptability

Forge captures both local and Forge embeddings cluster previously Pre-trained embeddings can

global structures. A single unseen instances across diverse be fine-tuned on diverse

pre-trained model provides problem types with high accuracy downstream tasks using

embeddings at multiple levels: without any supervision. minimal additional data and

instance, variable, constraint. low-cost labeling strategies.
2i)

Solver Integration ML Augmentation

Forge predictions integrate into Gurobi Evaluate against state-of-the-art methods,

demonstrating consistently lower primal gap improving their performance on large sets of

across tasks, domains, and sizes. instances they were trained on, yet unseen by Forge.

Initial Analysis: Clustering
Unseen Instances

We evaluate Forge embeddings on clustering unseen instances across
various problem domains, comparing against two baseline approaches.

®7 Training

MIPLIB instances and its relaxation

@7 Testing

D-MIPLIB instances across 21 domain-difficulty pairs

@7 Evaluation

Quantitative (NMl score) and qualitative (visualization) analysis

Training Configuration

~

600 instances from MIPLIB,
sorted by size to ensure

Training Data

bipartite graphs fit on GPU
memory. Generated two
additional instances per
MIPLIB instance by randomly
dropping 5% and 10% of
constraints.

Total: 1,800 MIP instances

Data Augmentation

Dropping constraints only
relaxes the problem,
providing valid augmented
training instances without
changing the fundamental
structure.

Model Architecture

Two GraphSage layers with
d=1024 dimensions and a

codebook with k=5000
codes(vocabulary size).

~

Test Dataset: D-MIPLIB

We evaluate on 1,050 instances from D-MIPLIB (Weimin et. al. 2024) categorized into
21 domain-difficulty pairs, covering a broad spectrum of problem types and complexity levels.

Set Cover

Easy, medium, hard

Other Problems

ltem Placement, Maritime
Inventory Routing

&

Independent Set

MIS easy, medium;
GIS easy to ext-hard

Vertex Cover

MVC easy, medium, hard

Combinatorial Auction

Very-easy to very-hard2

Baseline Comparisons

/

Mean Readout

Averages all GNN node embeddings within the trained
Forge model. Ablation without vector quantization.

\

Label Propagation

Two-hop label propagation on the 10-dimensional static
node features and averages the resulting node vectors.

J
A

Forge Embeddings

Uses the distribution of discrete codes assigned to
constraints and variables as instance-level embeddings.

J
~

J

(A) Mean Readout (B) Label Propagation
NMI: 0.087 = 0.035 NMI: 0.790 £ 0.025

0.087 0.790

Mean Readout Label Propagation
Only slightly better than random Better performance operating
(0.047). Suffers from over- directly on sparse input features,
smoothing when averaging dense avoiding over-smoothing.

GNN embeddings.

(C)FORGE Embedding
NMI: 0.843 = 0.003

0.843

CA-easy
CA-medium
CA-very-easy
CA-very-hard
CA-very-hard2
GISP-easy
GISP-ext-hard
GISP-hard
GISP-medium
GISP-very-hard
GISP-very-hard2
IP-very-hard
MIRP-medium
MiS-easy
MIS-medium
MVC-easy
MVC-hard
MVC-medium
SC-easy
SC-hard
SC-medium

Forge Embeddings

Best performance by utilizing
distribution of discrete codes,
circumventing over-smoothing
and capturing global structure.

Bin Packing

Capacitated Warehouse Location
Cutpacking

General Assignment

Job Shop Scheduling

Map Labeling

Scheduling

Stochastic Server Location
Train Timetabling

Vertex Coloring

O We repeat the experiment using our MIPLIB-pretrained Forge to cluster striPlib instances.

O We select b0 instances from each of 10 previously unseen problem types.

O Forge cleanly clusters different problems despite never seeing these instances.

O Interesting patterns: Train Timetabling and Map Labeling appearing close to each other, potential TL opportunities.

Set Cover Problem

Find smallest number of subsets that cover all
elements. A covering problem with >
constraints.

Vertex Cover Problem

Find smallest set of vertices such that every
edge has at least one endpoint. Also, a
covering problem.

Bin Packing Problem

Find smallest number of bins that pack all
items within capacity. A packing problem with
< constraints.

Independent Set Problem

Find largest set of vertices with no adjacent
nodes. Also, a packing problem,
complementary to Vertex Cover.

Vector Arithmetic in
Latent Optimization Space

V ertexCover — SetCover+ BinPacking =
IndependentSet

Experimental Setup

Fixed graph size: 1,000 vertices

50 random instances per

problem

Controlled difficulty: solvable
within 60s

Methodology

Compute mean embeddings for
each problem type, calculate
difference vector between covering
and packing, apply transformation to

Vertex Cover instances.

Set Cover (D-MIPLIB)

Maximal Independent Set (D-MIPLIB)
Minimum Vertex Cover (D-MIPLIB)

Updated Minimum Vertex Cover (D-MIPLIB)
Bin Packing (STRIPLIB)

Updated Vertex Cover instances (shown in black) move closer to Independent Set instances after applying the

transformation. This validates that meaningful semantic directions exist in the optimization embedding space.

Set Cover (D-MIPLIE)

Maximal Independent Set (D-MIPLIB)
Minimum Vertex Cover (D-MIPLIB)
Updated Minimum Vertex Cover (D-MIPLIB)
Bin Packing (STRIPLIE)

Updated Vertex Cover instances (shown in black) move closer to Independent Set instances after applying the

transformation. This validates that meaningful semantic directions exist in the optimization embedding space.

Our Contributions

@

Foundational Model Unsupervised Generalization = Supervised Adaptability

Forge captures both local and Forge embeddings cluster previously Pre-trained embeddings can

global structures. A single unseen instances across diverse be fine-tuned on diverse

pre-trained model provides problem types with high accuracy downstream tasks using

embeddings at multiple levels: without any supervision. minimal additional data and

instance, variable, constraint. low-cost labeling strategies.
¢ 2i)

Solver Integration ML Augmentation

Forge predictions integrate into Gurobi Evaluate against state-of-the-art methods,

demonstrating consistently lower primal gap improving their performance on large sets of

across tasks, domains, and sizes. instances they were trained on, yet unseen by Forge.

Supervised Experiments

We now shift to supervised evaluations to demonstrate Forge's utility in improving MIP solving across
fundamentally different downstream tasks.

Task Selection Criteria Same Pre-trained Model

Tasks must provide utility for MIP We use the same pre-trained

solving, enable fair comparison, Forge model for all tasks,

be radically different from each problems, sizes, validating

other, and be solver-agnostic general applicability

Task I: Integrality Gap Prediction Task ll: Variable Guidance

Used to generate a pseudo-cut added to the Used to provide hints to the solver during search
original problem formulation to tighten its bound about which variables are likely to be in the

at the beginning of the search. solution.

(A) Supervised Fine Tuning

Code-word for ¢ 1
Code-word for ¢,

L]
[]
Integrality Gap
Prediction Head

Mean Read-out
Predicted
Integrality Gap

®
.
SN d (S.oe agling
o e
Search Guidance
Prediction Head

Search Guidance

Input Bipartite Codewords Fine Tuning Predictions
Representation of generated by Heads
a MIP Instance FORGE
Fine-Tuning Philosophy NLP Analogy
The same pre-trained model then fine-tuned on a Fine-tune prediction heads for entity extraction in a
small and cheaply labeled data to learn prediction specific domain(e.qg., finance)using a small set of

heads for completely different tasks. labels. Revive the success of foundational models

Training the Foundational Forge Model

Expanded Dataset

1,800 MIPLIB instances
1,050 D-MIPLIB instances
Total: 2,850 MIP instances

\

Model Specifications
- 3.25 million parameters
Two GraphSage layers

d=1,024 dimensions

k=5,000 codebook size

Task I: Predicting the Integrality Gap

There is no magic constant that one could always use heuristically, wide distribution %5-95%
Makes integrality gap prediction a deliberate learning task.

(B) Distribution of Integrality Gaps

Challenge
Predict gap without solving to optimality
, Application F
Generate pseudo-cut as additional constrain
v
Risk & Benefit
Incorrect prediction may over/underestimate objective N AN Eg e

~~__~— Pseudo-cuts can speed up solving by tightening bounds

Problem Types

Integrality Gap: Training Setup

We train on 450 instances from CA, SC, and GIS problems with varying difficulty levels.
This is considerably smaller than the pre-training dataset (2850 instances)

Training Data Label Collection

« CA: very-easy, easy, medium Each instance solved with Gurobi using 120s.
. SCP: easy, medium, hard Label is the ratio between integer solution at

timeout and LP relaxation. Conservative label

« GISP: easy, medium, hard . . R
strategy does not require solving to optimality.

« b0instances per category

Code-word for ¢,
Code-word for ¢, . . I

Mean Read-out

Fine-Tuning

[]
[]
Code-word for c, Integrality Gap
———————————————

Prediction Head

Prediction Head

Dense layer added to pre-trained Forge model,
takes codewords as input and outputs a real number using mean readout

Training Objective

Regression task trained with mean error loss in an end-to-end manner

Minimal Data

77T

Only 450 labeled instances needed, with cheap labeling strategy that doesn't require optimality

Predicted
Integrality Gap

Integrality Gap: Test Setup

Evaluate on 50 very-hard instances each of CA, SC, GIS, and MVC.
Fine-tuning did not include 'very hard' category, and MVC is entirely unseen.

—0— —0— —0—

Prediction Pseudo-Cut Generation Integration
Forge predicts integrality Adjust initial LP relaxation Add pseudo-cut as
gap for each test instance objective based on additional constraint to

prediction original formulation

Integrality Gap: Prediction Accuracy

We measure the deviation in the mean absolute error between the known integrality gap and the gap
predicted by Forge on very-hard test instances.

5) 15.42% @D) 13.55%
Combinatorial Auction Set Cover

a D) 12.03% 19.08%
Generalized Independent Set Minimum Vertex Cover

@ Ablation: Training from scratch without pre-trained Forge worsens error by ~33%
on average, highlighting the importance of unsupervised pre-training.

(C) Generalized Ind. Set (D) Minimum Vertex Cover
Primal Gap Gain: 32.38%

= Gurobi
Gurobi + FORGE

(A) Combinatorial Auction (B) Set Cover
Primal Gap Gain: 76.77% Primal Gap Gain: 29.59% Primal Gap Gain: 84.52%

2
1074 —— Gurobi 1021 \
Gurobi + FORGE '

= Gurobi

= Gurobi
Gurobi + FORGE

Gurobi + FORGE

S
Primal Gap (log scale)

Primal Gap (log scale)
Primal Gap (log scale)

L
©
O
wn
o
o
Q
©
O
©
=
y =
a

1000 2000

2000
Time (s)

2000 ‘ 1000
Time (s)

1000 2000 1000
Time (s)

Time (s)

Comparison with Gurobi Solver

We compare the commercial Gurobi solver on very-hard instances with and without our predicted pseudo-cut.
Each subplot shows the primal gap (lower is better) averaged over 50 instances with 3600s time limit.

Without exception, across all problem types, the use of pseudo-cuts generated by Forge consistently
results in better primal gaps. The performance gains reach up to 85%.

Take Aways from Solver Comparison

Early Improvements

The solver improves the gap early in the search, and our
pseudo-cuts make these gains immediately more

pronounced.

Minimal Training Required

Fine-tuning only needed 50 instances per problem type,

not even including MVC in fine-tuning.

No Optimality Dependency

Label collection had no dependency on optimal solutions,

making the approach practical and scalable.

Consistent Performance

Forge consistently improves solver performance across all

tested problem types and difficulty levels.

il
s
>
.

Comparison with State-of-the-Art ML

Forge Lietal. (2025)
Used as-is without additional training - Trained on massive dataset
Tested on 17,500 previously unseen instances « Problem-specific training

From 400 generated problem types

18.63% 20.14%

Forge achieves lower error rates despite being tested on entirely unseen problem types without additional training.

Task Il: Guiding the Search

The previous task evaluates the global representations at instance level.
Next task evaluates the local representations, specifically the variable
embeddings for search guidance.

The Approach The Goal

Fine-tune on a smaller dataset Provide variable hints to the
with a labeling strategy that Gurobi solver to quide the
does not depend on solving to search toward promising

optimality. solutions.

Training & Labeling for Search Guidance

We collect 100 instances from CA (easy, medium), SC (easy, medium, hard) and GIS (easy, medium)
for a total of 700 training instances.

1 2 3

Solution Pool Generation Variable Labeling Triplet Construction

Each instance is solved using Variables that never appearinany Variables that appearin the same
Gurobi to find a pool of five solution are marked as 'negative’. number of solutions are treated
feasible solutions within five Variables that appearina as '‘positive’ and ‘anchor' pairs for
minutes. Optimality is not solution at least once are marked triplet loss.

required for labeling. as 'positive’.

Supervised Fine-Tuning with Dual Loss

Fine-tune using a combination of binary cross-entropy and triplet loss to learn which variable assignments

Cross-Entropy Loss

We add a dense prediction
head to pre-trained Forge
to predict whether each
variable is positive or
negative.

.

Triplet Loss

Standard triplet loss where
variables appearingin the
same humber of solutions
are treated as 'positive' and
‘anchor' pairs.

_

~

J

\embeddlng space. /

Negative Selection

For every positive/anchor
pair, we select the negative
variable that is closest to
the anchor in the
unsupervised Forge

Pre-trained Forge circumvent the challenge of identifying good negatives, as trivial negatives do not help

learning.

Search Guidance: Test Setup

We test on 50 medium instances from each of CA, SC, GIS, and MVC.
Again, MVC is unseen in fine-tuning.

Initial Solution

Find feasible solution with Gurobi within 1s
variables serve as anchors

Neighbor Selection

Identify neighbors of positive/negative anchors within fixed
radius in embedding space

Hint Generation

Top-decile neighbors of positive anchors hinted for inclusion,
bottom-decile neighbors of negative anchors for exclusion

(OO

(A) Combinatorial Auction (B) Set Cover (C) Generalized Ind. Set
Primal Gap Gain: 31.16% | Primal Gap Gain: 39.17% | Primal Gap Gain: 31.62%

- Gurobi

{ \,. ~— Gurobi
Gurobi + FORGE

Gurobi + FORGE

- Gurobi P

Gurobi + FORGE 101 .

~

—
o
[=]
bt

101

S
Primal Gap (log scale)

S
Primal Gap (log scale)
=

Primal Gap (log scale)
=)

)
©
O
v
(o)
o
Q
©
O
©
=
g =
a

—
o

400 600 800 C : 200 300 400 500
Time (s) Time (s)

Comparison with Gurobi Solver

48% 35%

Primal Gap Improvement Speed-Up

Up to 35% faster convergence to

optimal solutions

Up to 48% improvement in primal

gap across tested problems

(D) Minimum Vertex Cover

Primal Gap Gain: 48.75%

=~ Gurobi
Gurobi + FORGE

400 600 800 1000
Time (s)

Search Guidance: Augmenting SOTA ML

We test Forge's ability to augment not only MIP solvers but also other ML methods.
We concatenate PS-Gurobi(Han et al., 2023) by Forge embeddings with their variable and node embeddings.

Integration Method Evaluation

- Use pre-trained Forge embeddings as-is Test on common subset of problems used in

. Apply PCA to reduce to 64 dimensions PS-Gurobi experiments: Combinatorial Auction

dG lized Ind dent Set
- Concatenate with PS-Gurobi embeddings andenefallzedihdependent o€

(A) Combinatorial Auction (B) Generalized Ind. Set
Primal Gap Gain: 41.07% Primal Gap Gain: 50.51%

PS Gurobi
—— PS Gurobi + FORGE

PS Gurobi
—— PS Gurobi + FORGE

Primal Gap (log scale)

)
©
Q
0
o
o
Q
©
O
©
£
=
o

1000 2000 0 250 500 750 1000 1250 1500
Time (s) Time (s)

A40+%

Combinatorial Generalized
Auction Independent Set

Limitations

—0——0— 0 —

Scale Interpretability Solver Integration

Forge is compact (3.25M The semantics of the learned Current experiments are one-
parameters trained on ~2.8K optimization vocabulary shot. Extending to operate
instances). In principle, it is remain unexplored. throughout the branch-and-
feasible to train on all publicly Preliminary evidence bound tree could enable tighter
available and synthetically suggests certain codes integration for further
generated MIP instances. capture local structure like improvements.

cliques of variables.

Future Directions

~ >

Broader Generalization

Other Downstream Tasks Extend beyond optimization to constraint

Leverage Forge for warm-starts, variable satisfaction problems and from complete to
selection, node selection, cut selection, solver incomplete search methods

configuration, and portfolio construction

Open-Source Release

To enable future research and support reproducibility, we are releasing comprehensive resources to the community.

-

Datasets

Training datasets and
benchmark collections

~

J

@
MIP Embeddings

Ready-to-use embeddings for MIPLIB,

D-MIPLIB, and strlPlib

4)

0,0
ot

Training Pipelines

Complete training and fine-

tuning code

J

0

Pre-trained Models

Forge weights for
immediate use

_

~

-

Forge-OS

Optimization-as-a-service for on-demand
embedding generation

2N

A New Paradigm for Optimization

Novel unsupervised framework for learning structural representations of
optimization at multiple levels, without requiring access solvers/labels

\/ . .
Unsupervised Learning
1
Discrete vector quantization captures global structure
\/
\/ .
Foundational Model
e Generalizes across diverse tasks, domains, and difficulty levels
\/
\/
Measurable Impact
3 Consistently improves both solvers and ML pipelines

Strategic Pillars of Enterprise Al @ Fidelity Al Center

Extraction and translation of natural language into downstream
tasks and intents for human-computer interaction

4 N h 4)
@ Al Learning from Offline Data @ Al for Learning from Online Feedback Al for Decision Making
Robust, scalable, reproducible features Adaptive, real-time, A/B testing systems Large-scale, integrated, (meta)
from structured, unstructured, and that continuously learn from user solvers for resource
semi-structured datasets. interaction. management and optimization.

Selective, TextWiser, Seq2Pat Mab2Rec, MABWiser Forge, Balans, PathFinder
N AN AN J
4 N [)
¢ Alfor Automated Assistants @ Responsible Al

Gala, Ner40pt, Text2Zinc, iCBS

- J

Horizontal capabilities for explainability, evaluation, fairness,
and bias mitigation across all systems

Jurity, BoolXAl

g 9

Open-Source Al at Scale: Establishing an Enterprise Al Strategy [Al Magazine'25]

() skadio.qgithub.io

https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.70032
https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.70032
https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.70032
https://skadio.github.io/

	Default Section
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

	Intro
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

	Forge
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

	Clustering
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

	vector_arithmetic
	Slide 34
	Slide 35
	Slide 36
	Slide 37

	experiments
	Slide 38
	Slide 39
	Slide 40
	Slide 41

	task_1_integrality
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

	task_2_search
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

	conclusion
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62

