
University of Southern California, USC ORAI Research Seminar, 2025

Forge: Foundational Optimization
Representations from Graph Embeddings

Serdar Kadıoğlu
1 Dept. of Computer Science, Brown University
2 AI Center of Excellence, Fidelity Investments

skadio.github.io

https://skadio.github.io/

Learning & Reasoning

Data Science: ML/DL/NLP/LLMs/etc.

Focuses on machine learning using historical data

to identify patterns and make predictions. Excels at

pattern recognition, classification, and forecasting.

System I - Predictive Models

• Learning from historical data patterns

• Probabilistic predictions and insights

• Ideal for unstructured problems

• Applications include recommendation systems,

image recognition, and natural language processing

Decision Science: OR/MIP/CP/SAT/LS/etc.

Focuses on combinatorial satisfaction and optimization

using logical and mathematical models. Provides provable

optimality and explicit reasoning.

System II - Prescriptive Models

• Mathematical and logical formulations

• Provably optimal for deterministic environments

• Perfect for structured problems

• Applications include verification, planning,

scheduling, routing, and resource allocation

Learning & Reasoning

The Evolution of AI Paradigms: From Classical AI to Modern and Generative AI (AAAI YouTube)

https://www.youtube.com/watch?v=8SMmjBQ40YE&list=PL3kNflhPEzie9ivF8N_Z3Ac4d4Sum8iVz

Strategic Pillars of Enterprise AI @ Fidelity AI Center

AI Learning from Offline Data

Robust, scalable, reproducible features
from structured, unstructured, and
semi-structured datasets.

Selective, TextWiser, Seq2Pat

AI for Learning from Online Feedback

Adaptive, real-time, A/B testing systems
that continuously learn from user
interaction.

Mab2Rec, MABWiser

AI for Decision Making

Large-scale, integrated, (meta)
solvers for resource
management and optimization.

Forge, Balans, PathFinder

AI for Automated Assistants

Extraction and translation of natural language into downstream
tasks and intents for human-computer interaction.

Gala, Ner4Opt, Text2Zinc, iCBS

Responsible AI

Horizontal capabilities for explainability, evaluation, fairness,
and bias mitigation across all systems.

Jurity, BoolXAI

Strategic Pillars of Enterprise AI @ Fidelity AI Center

Open-Source AI at Scale: Establishing an Enterprise AI Strategy [AI Magazine’25]

https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.70032
https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.70032
https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.70032
https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.70032

Mixed-Integer Programming (MIP)
MIP formulates combinatorial optimization problems with both continuous and integer variables.

LP Relaxation

Obtained by relaxing integer constraints to
continuous. Standard bounding procedure.

Integrality Gap

The integrality gap measures the difference
between LP relaxation and optimal MIP.

Existing ML-OR Integration

• Algorithm configuration procedures

• Variable and constraint selection

• Branching strategies

• Cut selection

• Node selection

• Tree-search configuration

Emerging NLP-OR Integration

• Named entity recognition for optimization

• Natural language interfaces for solvers

• Automated model formulation

• Explanation generation

• Interactive modeling assistants

• Domain-specific optimization co-pilots

Learning & Reasoning Hybrids in Optimization

Gala (NeurIPS’25), Text2Zinc (AAAI’25)
Ner4Opt (Constraints’24) , iCBS (MAKE’24)

Balans (IJCAI’25), Dash (EJOR’16)
3S (CP’’11), ISAC (ECAI’10)

Learning-Based Methods Face
Practical Limitations

Heavy Training
Dependency

Training is computationally

costly and depends on

carefully curating datasets

with desired properties and

distributions.

Limited
Generalization

Adapting learning-based

methods to new distributions

and domains remains a

significant challenge in the

field.

Solver Dependency Paradox

Ironically, training depends on optimization solvers to create labeled

datasets, defeating the purpose of improving solving for hard instances.

Vision: A Foundational Model for Optimization

Inspiration from Other
Domains (CV, NLP)

Foundational methods in

text and image embeddings

have achieved remarkable

success through

unsupervised learning on

abundant data.

Key Question
for Optimization

Can we leverage publicly

available MIP instances to

develop a pre-trained, general-

purpose foundational model

for MIP representations?

Multiple Scenarios &
Applications

A single pre-trained

foundation model that

serves multiple optimization

tasks across varying

problem domains and sizes.

Vision: A Foundational Model for Optimization

Vision: A Foundational Model for Optimization

Inspiration from Other
Domains (CV, NLP)

Foundational methods in

text and image embeddings

have achieved remarkable

success through

unsupervised learning on

abundant data.

Key Question
for Optimization

Can we leverage publicly

available MIP instances to

develop a pre-trained, general-

purpose foundational model

for MIP representations?

Multiple Scenarios &
Applications

A single pre-trained

foundation model that

serves multiple optimization

tasks across varying

problem domains and sizes.

Schloss Dagstuhl – Leibniz Center for Informatics - Seminar on Data-Driven Combinatorial Optimization (2022)

https://drops.dagstuhl.de/storage/04dagstuhl-reports/volume12/issue10/22431/DagRep.12.10.166/DagRep.12.10.166.pdf
https://drops.dagstuhl.de/storage/04dagstuhl-reports/volume12/issue10/22431/DagRep.12.10.166/DagRep.12.10.166.pdf
https://drops.dagstuhl.de/storage/04dagstuhl-reports/volume12/issue10/22431/DagRep.12.10.166/DagRep.12.10.166.pdf
https://drops.dagstuhl.de/storage/04dagstuhl-reports/volume12/issue10/22431/DagRep.12.10.166/DagRep.12.10.166.pdf
https://drops.dagstuhl.de/storage/04dagstuhl-reports/volume12/issue10/22431/DagRep.12.10.166/DagRep.12.10.166.pdf
https://drops.dagstuhl.de/storage/04dagstuhl-reports/volume12/issue10/22431/DagRep.12.10.166/DagRep.12.10.166.pdf
https://drops.dagstuhl.de/storage/04dagstuhl-reports/volume12/issue10/22431/DagRep.12.10.166/DagRep.12.10.166.pdf
https://drops.dagstuhl.de/storage/04dagstuhl-reports/volume12/issue10/22431/DagRep.12.10.166/DagRep.12.10.166.pdf

The Growing Success of ML-Based Approaches

1Meta-Learning Frameworks

Zhou et al. (2023) propose methods that
generalize across vehicle routing

problem variants of different sizes but
remain limited to routing.

2 Multi-Task Approaches

Cai et al. (2025a) introduce frameworks
for backdoor prediction and solver
configuration, trained for each problem.

3LLM-Based Methods

Li et al. (2025) use evolutionary
frameworks to generate diverse MIP

problems but require supervision and
many pre-solved instances.

The Gap: No General-Purpose Optimization
Embeddings Exist Today

Problem-Specific

Generalize across tasks but

confined to one problem

domain (e.g., vehicle routing).

Task-Specific

Scale across problem sizes

and variants but limited to

one optimization task.

Supervised

Rely on pre-solved

instances and costly data

labeling, hindering real-world

adaptability.

Generate MIP embeddings through pre-training to learn structural representations at the instance level
in an unsupervised manner, using a broad distribution of MIP instances without access to their solutions.

From Natural Language Processing

We adopt the concept of a vocabulary to represent the latent space of optimization problems
enabling instance-level representations.

From Computer Vision

We leverage vector quantization to preserve global information, addressing the limitations
of GNN-based approaches in prior work.

Forge: Foundational Model for MIP Embeddings

Foundational Model
Forge captures both local and
global structures. A single
pre-trained model provides
embeddings at multiple levels:
instance, variable, constraint.

Unsupervised Generalization
Forge embeddings cluster previously
unseen instances across diverse
problem types with high accuracy
without any supervision.

Supervised Adaptability
Pre-trained embeddings can
be fine-tuned on diverse
downstream tasks using
minimal additional data and
low-cost labeling strategies.

Solver Integration
Forge predictions integrate into Gurobi
demonstrating consistently lower primal gap
across tasks, domains, and sizes.

ML Augmentation
Evaluate against state-of-the-art methods,
improving their performance on large sets of
instances they were trained on, yet unseen by Forge.

Our Contributions

Foundational Model
Forge captures both local and
global structures. A single
pre-trained model provides
embeddings at multiple levels:
instance, variable, constraint.

Unsupervised Generalization
Forge embeddings cluster previously
unseen instances across diverse
problem types with high accuracy
without any supervision.

Supervised Adaptability
Pre-trained embeddings can
be fine-tuned on diverse
downstream tasks using
minimal additional data and
low-cost labeling strategies.

Solver Integration
Forge predictions integrate into Gurobi
demonstrating consistently lower primal gap
across tasks, domains, and sizes.

ML Augmentation
Evaluate against state-of-the-art methods,
improving their performance on large sets of
instances they were trained on, yet unseen by Forge.

Our Contributions

1 High-Level Idea
Forge uses a vector quantized graph autoencoder to reconstruct node features and edges. It is pretrained
across diverse problems and sizes to learn generic MIP representations without dependency on optimal solutions.

2 Architecture

The architecture combines bipartite graph, GNN embeddings, vector quantization with a codebook,

and reconstruction objectives to learn structural patterns in an unsupervised manner.

A) MIP-to-Bipartite Representation
Given a MIP instance, we start with its bipartite representation (Gasse et.
al. 2019) and node features. Each node represents a constraint or variable,
with edges indicating which variables are part of which constraints.

Node Features Forge uses only basic properties of the input instance.

• Constraint nodes: 4 features (sense: <,=,> and RHS value)

• Variable nodes: 6 features (type: bin, int, cont, ub/lb, objective coeff)

• Total: 10-dimensional vector per node

Key Advantage: No dependency on solving the instance or
accessing internal solver information.

B) Bipartite to GNN Embeddings
The bipartite graph with 10-dimensional input features is passed into a
Graph Neural Network to generate embeddings for each constraint and
variable node.

GraphSage Layers

Forge uses two GraphSage layers that project each input node into
a d-dimensional embedding space.

The Locality Challenge

GNNs capture local variable and constraint-level information,
struggle with global information due to inherent locality bias
(Feng et. al. 2025).

C) Vector Quantized Codebook

To preserve global structure, we introduce a vector quantized codebook

with k discrete codes. These codes act as a 'vocabulary', akin to language

models, across MIP instances of various domains and difficulties.

Inspiration from
Computer Vision

The design follows approaches

developed in computer vision and

structure-aware graph tokenizer

extensions (Yang et. al. 2024)

Preserving
Global Structure

By utilizing discrete codes, Forge

circumvents the over-smoothing

issue and captures the global

structure of MIP instances.

D) GNN-to-Codeword Mapping
GNN embeddings are passed into a vector quantizer which consists of

a codebook with k codes. The codebook maps each node to a discrete code.

Code Assignment

Each node in the bipartite

graph is assigned a discrete

code from the codebook.

Codeword Mapping

Each code in the codebook

is then mapped into a d-

dimensional codeword,

producing codeword

representations for

constraints and

variables.

Alignment

The codewords are aligned

with the dimensionality of

the hidden GNN layers.

E) Codeword-to-Bipartite Reconstruction

Codewords corresponding to each constraint and variable node are used to
reconstruct the original bipartite representation of the MIP instance.

Reconstruction Process

Codewords are passed into

 linear decoders to reconstruct:

• Node feature decoder

• Edge structure decoder

Unsupervised Learning

By reconstructing the input,

Forge learns from the structure

of MIP instances without

requiring labels or solutions.

F) Loss Function

The loss function minimizes edge reconstruction loss, node feature reconstruction loss, and losses

related to vector quantization.

Reconstruction Loss

Measures how well the

model reconstructs the

original bipartite graph

structure and node features.

Codebook Loss

Moves codewords closer to

node embeddings, similar to

k-means clustering.

Commitment Loss

Encourages node

embeddings to commit to

their assigned codewords.

Components of the
Loss Function
The loss function components work together to learn meaningful
representations through reconstruction and vector quantization.

1 Codebook Loss Intuition
Can be interpreted as k-means clustering, where codewords
(cluster centroids) move closer to node embeddings while
embeddings are fixed via stop-gradient.

2 Commitment Loss Intuition
Fixes codewords using stop-gradient and moves
embeddings towards codewords instead.

3 Balancing Act
The hyperparameter α weighs the importance of the
commitment loss, balancing the two objectives.

What does Forge Produce?

Local Representations

Each constraint and variable
node is assigned a discrete
code mapped to a codeword,
providing fine-grained
embeddings.

Global Representations

Instance-level embeddings
are created from the
distribution of codes across
all nodes in the MIP instance.

Embedding Structure

Each instance is represented
by a vector of size |codebook|,
where each value indicates
the frequency of the
corresponding code.

Foundational Model
Forge captures both local and
global structures. A single
pre-trained model provides
embeddings at multiple levels:
instance, variable, constraint.

Unsupervised Generalization
Forge embeddings cluster previously
unseen instances across diverse
problem types with high accuracy
without any supervision.

Supervised Adaptability
Pre-trained embeddings can
be fine-tuned on diverse
downstream tasks using
minimal additional data and
low-cost labeling strategies.

Solver Integration
Forge predictions integrate into Gurobi
demonstrating consistently lower primal gap
across tasks, domains, and sizes.

ML Augmentation
Evaluate against state-of-the-art methods,
improving their performance on large sets of
instances they were trained on, yet unseen by Forge.

Our Contributions

Initial Analysis: Clustering
Unseen Instances

We evaluate Forge embeddings on clustering unseen instances across
various problem domains, comparing against two baseline approaches.

1 Training

MIPLIB instances and its relaxation

2 Testing

D-MIPLIB instances across 21 domain-difficulty pairs

3 Evaluation

Quantitative (NMI score) and qualitative (visualization) analysis

Training Configuration

Training Data

600 instances from MIPLIB,

sorted by size to ensure

bipartite graphs fit on GPU

memory. Generated two

additional instances per

MIPLIB instance by randomly

dropping 5% and 10% of

constraints.

Total: 1,800 MIP instances

Model Architecture

Two GraphSage layers with

d=1024 dimensions and a

codebook with k=5000

codes (vocabulary size).

Data Augmentation

Dropping constraints only

relaxes the problem,

providing valid augmented

training instances without

changing the fundamental

structure.

Test Dataset: D-MIPLIB
We evaluate on 1,050 instances from D-MIPLIB (Weimin et. al. 2024) categorized into

21 domain-difficulty pairs, covering a broad spectrum of problem types and complexity levels.

Set Cover

Easy, medium, hard

Independent Set

MIS easy, medium;

GIS easy to ext-hard

Vertex Cover

MVC easy, medium, hard

Combinatorial Auction

Very-easy to very-hard2

Other Problems

Item Placement, Maritime

Inventory Routing

Baseline Comparisons

1
Mean Readout

Averages all GNN node embeddings within the trained
Forge model. Ablation without vector quantization.

2
Label Propagation

Two-hop label propagation on the 10-dimensional static
node features and averages the resulting node vectors.

3
Forge Embeddings

Uses the distribution of discrete codes assigned to
constraints and variables as instance-level embeddings.

0.087
Mean Readout

Only slightly better than random
(0.047). Suffers from over-

smoothing when averaging dense
GNN embeddings.

0.790
Label Propagation

Better performance operating
directly on sparse input features,

avoiding over-smoothing.

0.843
Forge Embeddings

Best performance by utilizing
distribution of discrete codes,
circumventing over-smoothing
and capturing global structure.

❑ We repeat the experiment using our MIPLIB-pretrained Forge to cluster strIPlib instances.

❑ We select 50 instances from each of 10 previously unseen problem types.

❑ Forge cleanly clusters different problems despite never seeing these instances.

❑ Interesting patterns: Train Timetabling and Map Labeling appearing close to each other, potential TL opportunities.

Set Cover Problem

Find smallest number of subsets that cover all

elements. A covering problem with ≥

constraints.

Vertex Cover Problem

Find smallest set of vertices such that every

edge has at least one endpoint. Also, a

covering problem.

Bin Packing Problem

Find smallest number of bins that pack all

items within capacity. A packing problem with

≤ constraints.

Independent Set Problem

Find largest set of vertices with no adjacent

nodes. Also, a packing problem,

complementary to Vertex Cover.

Vector Arithmetic in
Latent Optimization Space

Experimental Setup

• Fixed graph size: 1,000 vertices

• 50 random instances per

problem

• Controlled difficulty: solvable

within 60s

Methodology

Compute mean embeddings for

each problem type, calculate

difference vector between covering

and packing, apply transformation to

Vertex Cover instances.

Updated Vertex Cover instances (shown in black) move closer to Independent Set instances after applying the

transformation. This validates that meaningful semantic directions exist in the optimization embedding space.

Updated Vertex Cover instances (shown in black) move closer to Independent Set instances after applying the

transformation. This validates that meaningful semantic directions exist in the optimization embedding space.

Foundational Model
Forge captures both local and
global structures. A single
pre-trained model provides
embeddings at multiple levels:
instance, variable, constraint.

Unsupervised Generalization
Forge embeddings cluster previously
unseen instances across diverse
problem types with high accuracy
without any supervision.

Supervised Adaptability
Pre-trained embeddings can
be fine-tuned on diverse
downstream tasks using
minimal additional data and
low-cost labeling strategies.

Solver Integration
Forge predictions integrate into Gurobi
demonstrating consistently lower primal gap
across tasks, domains, and sizes.

ML Augmentation
Evaluate against state-of-the-art methods,
improving their performance on large sets of
instances they were trained on, yet unseen by Forge.

Our Contributions

Supervised Experiments

We now shift to supervised evaluations to demonstrate Forge's utility in improving MIP solving across

fundamentally different downstream tasks.

Task Selection Criteria

Tasks must provide utility for MIP

solving, enable fair comparison,

be radically different from each

other, and be solver-agnostic

Same Pre-trained Model

We use the same pre-trained

Forge model for all tasks,

problems, sizes, validating

general applicability

Task I: Integrality Gap Prediction

Used to generate a pseudo-cut added to the

original problem formulation to tighten its bound

at the beginning of the search.

Task II: Variable Guidance

Used to provide hints to the solver during search

about which variables are likely to be in the

solution.

Fine-Tuning Philosophy

The same pre-trained model then fine-tuned on a

small and cheaply labeled data to learn prediction

heads for completely different tasks.

NLP Analogy

Fine-tune prediction heads for entity extraction in a

specific domain (e.g., finance) using a small set of

labels. Revive the success of foundational models

Training the Foundational Forge Model

Expanded Dataset

• 1,800 MIPLIB instances

• 1,050 D-MIPLIB instances

• Total: 2,850 MIP instances

Model Specifications

• 3.25 million parameters

• Two GraphSage layers

• d = 1,024 dimensions

• k = 5,000 codebook size

Task I: Predicting the Integrality Gap
There is no magic constant that one could always use heuristically, wide distribution %5-95%
Makes integrality gap prediction a deliberate learning task.

Challenge

Predict gap without solving to optimality

Application

Generate pseudo-cut as additional constrain

Risk & Benefit

Incorrect prediction may over/underestimate objective

Pseudo-cuts can speed up solving by tightening bounds

Integrality Gap: Training Setup

We train on 450 instances from CA, SC, and GIS problems with varying difficulty levels.

This is considerably smaller than the pre-training dataset (2850 instances)

Training Data

• CA: very-easy, easy, medium

• SCP: easy, medium, hard

• GISP: easy, medium, hard

• 50 instances per category

Label Collection

Each instance solved with Gurobi using 120s.

Label is the ratio between integer solution at

timeout and LP relaxation. Conservative label

strategy does not require solving to optimality.

1 Prediction Head

2 Training Objective

Regression task trained with mean error loss in an end-to-end manner

3 Minimal Data

Only 450 labeled instances needed, with cheap labeling strategy that doesn't require optimality

Fine-Tuning

Dense layer added to pre-trained Forge model,

takes codewords as input and outputs a real number using mean readout

Evaluate on 50 very-hard instances each of CA, SC, GIS, and MVC.

Fine-tuning did not include 'very hard' category, and MVC is entirely unseen.

1

Prediction

Forge predicts integrality

gap for each test instance

2

Pseudo-Cut Generation

Adjust initial LP relaxation

objective based on

prediction

3

Integration

Add pseudo-cut as

additional constraint to

original formulation

Integrality Gap: Test Setup

Integrality Gap: Prediction Accuracy

We measure the deviation in the mean absolute error between the known integrality gap and the gap
predicted by Forge on very-hard test instances.

15.42%

Combinatorial Auction

13.55%

Set Cover

12.03%

Generalized Independent Set

19.08%

Minimum Vertex Cover

Ablation: Training from scratch without pre-trained Forge worsens error by ~33%
on average, highlighting the importance of unsupervised pre-training.

Comparison with Gurobi Solver

We compare the commercial Gurobi solver on very-hard instances with and without our predicted pseudo-cut.

Each subplot shows the primal gap (lower is better) averaged over 50 instances with 3600s time limit.

Without exception, across all problem types, the use of pseudo-cuts generated by Forge consistently

results in better primal gaps. The performance gains reach up to 85%.

Take Aways from Solver Comparison

Early Improvements

The solver improves the gap early in the search, and our

pseudo-cuts make these gains immediately more

pronounced.

Minimal Training Required

Fine-tuning only needed 50 instances per problem type,

not even including MVC in fine-tuning.

No Optimality Dependency

Label collection had no dependency on optimal solutions,

making the approach practical and scalable.

Consistent Performance

Forge consistently improves solver performance across all

tested problem types and difficulty levels.

Comparison with State-of-the-Art ML

18.63% 20.14%
Forge achieves lower error rates despite being tested on entirely unseen problem types without additional training.

Forge

• Used as-is without additional training

• Tested on 17,500 previously unseen instances

• From 400 generated problem types

Li et al. (2025)

• Trained on massive dataset

• Problem-specific training

Task II: Guiding the Search

The previous task evaluates the global representations at instance level.

Next task evaluates the local representations, specifically the variable

embeddings for search guidance.

The Approach

Fine-tune on a smaller dataset

with a labeling strategy that

does not depend on solving to

optimality.

The Goal

Provide variable hints to the

Gurobi solver to guide the

search toward promising

solutions.

Training & Labeling for Search Guidance

We collect 100 instances from CA (easy, medium), SC (easy, medium, hard) and GIS (easy, medium)

for a total of 700 training instances.

1

Solution Pool Generation

Each instance is solved using

Gurobi to find a pool of five

feasible solutions within five

minutes. Optimality is not

required for labeling.

2

Variable Labeling

Variables that never appear in any

solution are marked as 'negative'.

Variables that appear in a

solution at least once are marked

as 'positive'.

3

Triplet Construction

Variables that appear in the same

number of solutions are treated

as 'positive' and 'anchor' pairs for

triplet loss.

Supervised Fine-Tuning with Dual Loss

Fine-tune using a combination of binary cross-entropy and triplet loss to learn which variable assignments

Cross-Entropy Loss

We add a dense prediction

head to pre-trained Forge

to predict whether each

variable is positive or

negative.

Triplet Loss

Standard triplet loss where

variables appearing in the

same number of solutions

are treated as 'positive' and

'anchor' pairs.

Negative Selection

For every positive/anchor

pair, we select the negative

variable that is closest to

the anchor in the

unsupervised Forge

embedding space.

Pre-trained Forge circumvent the challenge of identifying good negatives, as trivial negatives do not help

learning.

Search Guidance: Test Setup
We test on 50 medium instances from each of CA, SC, GIS, and MVC.
Again, MVC is unseen in fine-tuning.

1
Initial Solution

Find feasible solution with Gurobi within 1s
variables serve as anchors

2
Neighbor Selection

Identify neighbors of positive/negative anchors within fixed
radius in embedding space

3
Hint Generation

Top-decile neighbors of positive anchors hinted for inclusion,
bottom-decile neighbors of negative anchors for exclusion

Comparison with Gurobi Solver

48%
Primal Gap Improvement

Up to 48% improvement in primal

gap across tested problems

35%
Speed-Up

Up to 35% faster convergence to

optimal solutions

Search Guidance: Augmenting SOTA ML

We test Forge's ability to augment not only MIP solvers but also other ML methods.

We concatenate PS-Gurobi (Han et al., 2023) by Forge embeddings with their variable and node embeddings.

Integration Method

• Use pre-trained Forge embeddings as-is

• Apply PCA to reduce to 64 dimensions

• Concatenate with PS-Gurobi embeddings

Evaluation

Test on common subset of problems used in

PS-Gurobi experiments: Combinatorial Auction

and Generalized Independent Set

40+%

Combinatorial
Auction

50+%

Generalized
Independent Set

Limitations

Scale

Forge is compact (3.25M
parameters trained on ~2.8K
instances). In principle, it is
feasible to train on all publicly
available and synthetically
generated MIP instances.

Interpretability

The semantics of the learned
optimization vocabulary
remain unexplored.
Preliminary evidence
suggests certain codes
capture local structure like
cliques of variables.

Solver Integration

Current experiments are one-
shot. Extending to operate
throughout the branch-and-
bound tree could enable tighter
integration for further
improvements.

Future Directions

Other Downstream Tasks

Leverage Forge for warm-starts, variable

selection, node selection, cut selection, solver

configuration, and portfolio construction

Broader Generalization

Extend beyond optimization to constraint

satisfaction problems and from complete to

incomplete search methods

Open-Source Release
To enable future research and support reproducibility, we are releasing comprehensive resources to the community.

Datasets

Training datasets and
benchmark collections

Training Pipelines

Complete training and fine-
tuning code

Pre-trained Models

Forge weights for
immediate use

MIP Embeddings

Ready-to-use embeddings for MIPLIB,
D-MIPLIB, and strIPlib

Forge-OS

Optimization-as-a-service for on-demand
embedding generation

A New Paradigm for Optimization

Novel unsupervised framework for learning structural representations of

optimization at multiple levels, without requiring access solvers/labels

Unsupervised Learning

Discrete vector quantization captures global structure

Foundational Model

Generalizes across diverse tasks, domains, and difficulty levels

Measurable Impact

Consistently improves both solvers and ML pipelines

Strategic Pillars of Enterprise AI @ Fidelity AI Center

AI Learning from Offline Data

Robust, scalable, reproducible features
from structured, unstructured, and
semi-structured datasets.

Selective, TextWiser, Seq2Pat

AI for Learning from Online Feedback

Adaptive, real-time, A/B testing systems
that continuously learn from user
interaction.

Mab2Rec, MABWiser

AI for Decision Making

Large-scale, integrated, (meta)
solvers for resource
management and optimization.

Forge, Balans, PathFinder

AI for Automated Assistants

Extraction and translation of natural language into downstream
tasks and intents for human-computer interaction

Gala, Ner4Opt, Text2Zinc, iCBS

Responsible AI

Horizontal capabilities for explainability, evaluation, fairness,
and bias mitigation across all systems

Jurity, BoolXAI

Open-Source AI at Scale: Establishing an Enterprise AI Strategy [AI Magazine’25]

skadio.github.io

https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.70032
https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.70032
https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.70032
https://skadio.github.io/

	Default Section
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

	Intro
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

	Forge
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

	Clustering
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

	vector_arithmetic
	Slide 34
	Slide 35
	Slide 36
	Slide 37

	experiments
	Slide 38
	Slide 39
	Slide 40
	Slide 41

	task_1_integrality
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

	task_2_search
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

	conclusion
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62

